【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O分别交AC,BC于点D,E,过点A作⊙O的切线交BC的延长线于点F,连接AE. ![]()
(1)求证:∠ABC=2∠CAF;
(2)过点C作CM⊥AF于M点,若CM=4,BE=6,求AE的长.
参考答案:
【答案】
(1)证明:连接BD,
∵AB是直径,
∴∠ADB=90°,
∵AF是⊙O的切线,
∴∠BAF=90°.
∴∠1+∠BAC=∠2+∠BAC=90°.
∴∠1=∠2.
∵AB=BC,
∴∠ABC=2∠1=2∠2
![]()
(2)解:∵∠1=∠2=∠3,∠3=∠4,
∴∠2=∠4.
∵AB是直径,
∴CE⊥AE,
∵CM⊥AF,CM=4,
∴CE=CM=4,
∵BE=6,
∴AB=BC=BE+EC=10.
在Rt△ABE中, ![]()
【解析】(1)首先连接BD,由AB为直径,可得∠ADB=90°,然后由等角的余角相等,证得∠1=∠2,继而证得结论;(2)由圆周角定理,易证得∠2=∠4,又由AB为直径,CM⊥AF,可求得CE=CM=4,继而求得AB的长,则可求得答案.
【考点精析】关于本题考查的切线的性质定理,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BCAB=AC2 , 那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,求太和门到太和殿之间的距离(
的近似值取2.2). 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】表是二次函数y=ax2+bx+c的部分x,y的对应值:
x
…
﹣1
﹣

0

1

2

3
…
y
…
m

﹣1

﹣2

﹣1

2
…
(1)二次函数图象的开口向 , 顶点坐标是 , m的值为;
(2)当x>0时,y的取值范围是;
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】小华在研究函数y1=x与y2=2x图象关系时发现:如图所示,当x=1时,y1=1,y2=2;当x=2时,y1=2,y2=4;…;当x=a时,y1=a,y2=2a.他得出如果将函数y1=x图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数y2=2x的图象.类比小华的研究方法,解决下列问题:

(1)如果函数y=3x图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为;
(2)①将函数y=x2图象上各点的横坐标不变,纵坐标变为原来的倍,得到函数y=4x2的图象; ②将函数y=x2图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象的函数表达式为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=x2+mx+n﹣1的对称轴为x=2.

(1)m的值为;
(2)若抛物线与y轴正半轴交于点A,其对称轴与x轴交于点B,当△OAB是等腰直角三角形时,求n的值;
(3)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个交点,求n的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.小宇发现点E的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.

(1)如图1,当α=β=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得△EMF≌△ENB,并由全等三角形的性质得到EB与EF的数量关系为 .
(2)如图2,当α=60°,β=120°时,
①依题意补全图形;
②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,
请举出反例说明;
(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系:
相关试题