【题目】表是二次函数y=ax2+bx+c的部分x,y的对应值:
x | … | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 | … |
y | … | m |
| ﹣1 |
| ﹣2 |
| ﹣1 |
| 2 | … |
(1)二次函数图象的开口向 , 顶点坐标是 , m的值为;
(2)当x>0时,y的取值范围是;
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 .
参考答案:
【答案】
(1)上;(1,﹣2);2
(2)y≥﹣2
(3)n>﹣3
【解析】解:(1)把点(0,﹣1),(1,﹣2)和(2,﹣1)代入二次函数解析式可得
,解得
,
∴二次函数解析式为y=x2﹣2x﹣1=(x﹣1)2﹣2,
∴二次函数图象开口向上,顶点坐标为(1,﹣2),
令x=﹣1,代入可得m=2,
所以答案是:上;(1,﹣2);2;
2)∵y=(x﹣1)2﹣2,
∴当x=1时,y有最小值﹣2,
∴当x>0时,y≥﹣2,
所以答案是:y≥﹣2;
3)在y=x+n中,令x=1代入可得y=1+n,
∵抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,
∴1+n>﹣2,解得n>﹣3,
所以答案是:n>﹣3.
【考点精析】关于本题考查的一次函数的性质和二次函数的性质,需要了解一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在线段AB上找一点C,C把AB分为AC和CB两段,其中BC是较小的一段,如果BCAB=AC2 , 那么称线段AB被点C黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图2,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割.已知太和殿到内金水桥的距离约为100丈,求太和门到太和殿之间的距离(
的近似值取2.2). 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图2,A,B两点的距离为18米,求这种装置能够喷灌的草坪面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O分别交AC,BC于点D,E,过点A作⊙O的切线交BC的延长线于点F,连接AE.

(1)求证:∠ABC=2∠CAF;
(2)过点C作CM⊥AF于M点,若CM=4,BE=6,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】小华在研究函数y1=x与y2=2x图象关系时发现:如图所示,当x=1时,y1=1,y2=2;当x=2时,y1=2,y2=4;…;当x=a时,y1=a,y2=2a.他得出如果将函数y1=x图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数y2=2x的图象.类比小华的研究方法,解决下列问题:

(1)如果函数y=3x图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为;
(2)①将函数y=x2图象上各点的横坐标不变,纵坐标变为原来的倍,得到函数y=4x2的图象; ②将函数y=x2图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象的函数表达式为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=x2+mx+n﹣1的对称轴为x=2.

(1)m的值为;
(2)若抛物线与y轴正半轴交于点A,其对称轴与x轴交于点B,当△OAB是等腰直角三角形时,求n的值;
(3)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个交点,求n的取值范围.
相关试题