【题目】在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.
(1)如图1,①∠BEC=_________°;
②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;
(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.
![]()
图1 图2
参考答案:
【答案】45
【解析】
(1)根据矩形的性质得到
,根据角平分线的定义得到
,根据三角形内角和定理计算即可;
(2)利用
定理证明
;
(3)连接
,证明四边形
是矩形,得到
,根据勾股定理求出
即可.
(1)①∵四边形ABCD为矩形,
∴∠ABC=∠BCD=90°,
∵BE平分∠ABC,
∴∠EBC=45°,
∴∠BEC=45°,
故答案为:45;
②△ADE≌△ECF,
理由如下:∵四边形ABCD是矩形,
∴∠ABC=∠C=∠D=90°,AD=BC.
∵FE⊥AE,
∴∠AEF=90°.
∴∠AED+∠FEC=180°-∠AEF=90°.
∵∠AED+∠DAE=90°,
∴∠FEC=∠EAD,
∵BE平分∠ABC,
![]()
∴∠BEC=45°.
∴∠EBC=∠BEC.
∴BC=EC.
∴AD=EC.
在△ADE和△ECF中,
![]()
∴△ADE≌△ECF;
(2)连接HB,如图2,
∵FH∥CD,
∴∠HFC=180°-∠C=90°.
∴四边形HFCD是矩形.
∴DH=CF,
∵△ADE≌△ECF,
∴DE=CF.
∴DH=DE.
∴∠DHE=∠DEH=45°.
∵∠BEC=45°,
∴∠HEB=180°-∠DEH-∠BEC=90°.
∵NH∥BE,NB∥HE,
∴四边形NBEH是平行四边形.
∴四边形NBEH是矩形.
∴NE=BH.
∵四边形ABCD是矩形,
∴∠BAH=90°.
∵在Rt△BAH中,AB=4,AH=2,
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,当直线BC、DC被直线AB所截时,∠1的同位角是_______,同旁内角是_______;当直线AB、AC被直线BC所截时,∠1的同位角是________;当直线AB、BC被直线CD所截时,∠2的内错角是________

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线BD上有一点C,则:
(1)∠1和∠ABC是直线AB,CE被直线_____所截得的____角;
(2)∠2和∠BAC是直线CE,AB被直线____所截得的_____角;
(3)∠3和∠ABC是直线_____、_____被直线_____所截得的____角;
(4)∠ABC和∠ACD是直线____、_____被直线_____所截得的角;
(5)∠ABC和∠BCE是直线_____、______被直线所截得的_____角.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,Rt△ABC的直角边AB在x轴上,∠ABC=90°.点A的坐标为(1,0),点C的坐标为(3,4),M是BC边的中点,函数
(
)的图象经过点M. (1)求k的值;
(2)将△ABC绕某个点旋转180°后得到△DEF(点A,B,C的对应点分别为点D,E,F),且EF在y轴上,点D在函数
(
)的图象上,求直线DF的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.)

(2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
①在图中画出与△ABC关于直线L成轴对称的
;
②请直线L上找到一点P,使得PC + PB的距离之和最小. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC内接于⊙O , AC是⊙O的直径,D是弧AB的中点.过点D作CB的垂线,分别交CB、CA延长线于点F、E .

(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若CF=6,∠ACB=60°,求阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】宁波某公司经销一种绿茶,每千克成本为
元.市场调查发现,在一段时间内,销售量
(千克)随销售单价
(元/千克)的变化而变化,具体关系式为:
.设这种绿茶在这段时间内的销售利润为
(元),解答下列问题:
(1)求
与
的关系式;
(2)当销售单价
取何值时,销售利润
的值最大,最大值为多少?
(3)如果物价部门规定这种绿茶的销售单价不得高于
元/千克,公司想要在这段时间内获得
元的销售利润,销售单价应定为多少元?
相关试题