【题目】列方程(组)解决问题
某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰.为此,组织活动的老师设计了如下表格进行统计.
一等奖 | 二等奖 | 三等奖 | 合计 | |
获奖人数(单位:人) | 40 | |||
奖品单价(单位:元) | 4 | 3 | 2 |
|
奖品金额(单位:元) | 100 |
已知获得二等奖的人数比一等奖的人数多5人.问:获利三种奖项的同学各多少人?
参考答案:
【答案】获得一等奖的同学有5人,获得二等奖的同学有10人,获得三等奖的同学有25人.
【解析】
设一等奖的人数有x人,根据二等奖的人数比一等奖的人数多5人,得出二等奖的人数,再根据总人数表示出三等奖的人数,最后根据奖品单价列出方程,然后求解即可得出答案.
设获得一等奖的同学有
人.
可填表如下:
一等奖 | 二等奖 | 三等奖 | 合计 | |
获奖人数(单位:人) |
|
|
| 40 |
奖品单价(单位:元) | 4 | 3 | 2 |
|
奖品金额(单位:元) |
|
|
| 100 |
根据题意列方程,得
.
去括号,得
.
移项,得
.
合并,得
.
系数化为1,得
.
所以
,
.
答:获得一等奖的同学有5人,获得二等奖的同学有10人,获得三等奖的同学有25人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:两位同学在用标有数字1,2,...,9的9张卡片做游戏.
甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片
”和“卡片
”),别告诉我卡片上是什么数字,然后你把卡片
上的数字乘以5,加上7,再乘以2,再加上卡片
上的数字,把最后得到的数
的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”
……
试验一下:
(1)如果乙同学抽出的卡片
上的数字为2,卡片
上的数字为5,他最后得到的数
等于多少;(2)若乙同学最后得到的数
,则卡片
上的数字为多少,卡片
上的数字为多少.解密:
请你说明:对任意告知的数
,甲同学是如何猜到卡片的.解:(1)
等于多少.(2)若
,则卡片
上的数字为多少,卡片
上的数字为多少.解密:
-
科目: 来源: 题型:
查看答案和解析>>【题目】初二年级教师对试卷讲评课中学生参与情况进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名初中学生的参与情况,绘制了如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为______度;
(2)请将频数分布直方图补充完整;
(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设
=n.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示
的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为( )
A. (4,﹣3) B. (﹣4,3) C. (﹣3,4) D. (﹣3,﹣4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“正做数学”的真实意思是“祝你成功”.若“正”所处的位置为(x,y),你找到的密码钥匙是:横坐标_____,纵坐标_____,破译的“今天考试”真实意思是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(2,2),B(4,1),C(4,4).

(1)作出
ABC关于原点O成中心对称的
A1B1C1.
(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在
A1B1C1的内部(不包括顶点和边界),求a的取值范围.
相关试题