【题目】如图,在等腰Rt△ABC中,角ACB=90°,P是线段BC上一动点(与点B,C不重合)连接AP,延长BC至点Q,使 CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.
(1)∠APC=α,求∠AMQ的大小(用含α的式子表示);
(2)在(1)的条件下,过点M作ME⊥QB于点E,试证明 PC 与 ME 之间的数量关系,并证明.
![]()
参考答案:
【答案】(1)∠AMQ=45°+α;(2)PC=ME;
【解析】
(1)由等腰直角三角形的性质得出∠BAC=∠B=45°,∠PAB=45°-α,由直角三角形的性质即可得出结论;
(2)由AAS证明△APC≌△QME,得出PC=ME,
(1)∠AMQ=45°+α;理由如下:
∵∠PAC=α,△ACB是等腰直角三角形,
∴∠BAC=∠B=45°,∠PAB=45°-α,
∵QH⊥AP,
∴∠AHM=90°,
∴∠AMQ=180°-∠AHM-∠PAB=45°+α;
(2)结论:PC=ME.
理由:连接AQ,作ME⊥QB,如图所示:
![]()
∵AC⊥QP,CQ=CP,
∴∠QAC=∠PAC=α,
∴∠QAM=45°+α=∠AMQ,
∴AP=AQ=QM,
在△APC和△QME中,
,
∴△APC≌△QME(AAS),
∴PC=ME,
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.
(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.
(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是G,且点G在边AD上,若EG⊥AC,AB=2,则FG的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(1,2)是反比例函数y=
图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】在图中网格上按要求画出图形,并回答问题:
(1)如果将三角形
平移,使得点
平移到图中点
位置,点
、点
的对应点分别为点
、点
,请画出三角形
;(2)画出三角形
关于点
成中心对称的三角形
.(3)三角形
与三角形
是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别,A:三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩,现根据调查结果绘制了不完全的条形统计图和扇形统计图如下:

请结合图中信息解答下列问题:
(1)九(1)班现有学生人,在扇形统计图中表示“B类别”的扇形的圆心角的度数为;
(2)请将条形统计图补充完整;
(3)若该校九年级有1000名学生,求计划“五一”小长假随父母到这三个景区游玩的学生多少名?
相关试题