【题目】如图所示,在ΔABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为点D、M,分别交BC于点E、N,且DE和MN交于点F.
(1)若∠B=24°,求∠BAE的度数.
(2)若AB=8,AC=11,思考ΔAEN的周长肯定小于多少?
(3)若∠EAN=40°,求∠F的度数.
![]()
参考答案:
【答案】(1)24°;(2)△AEN的周长肯定小于19;(3)70°.
【解析】
(1)根据线段垂直平分线的性质和等腰三角形的性质即可求出结果;
(2)先根据线段垂直平分线的性质得出△AEN的周长=BC的长,再根据三角形的三边关系即可得出答案;
(3)根据线段垂直平分线的性质,可得AE=BE,AN=CN,又由等边对等角,即可得∠BAE=∠B,∠CAN=∠C,然后由三角形内角和定理,即可求得∠BAE+∠CAN的度数,然后由四边形的内角和等于360°即可求得∠F的度数;
解:(1)∵DE是边AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=24°;
(2)∵MN是边AC的垂直平分线,∴NA=NC,
∴△AEN的周长=AE+EN+NA=BE+EN+NC=BC,
∵AC-AB<BC<AC+AB,∴3<BC<19,∴△AEN的周长肯定小于19;
(3)∵DE、MN是边AB、AC的垂直平分线,
∴AE=BE,AN=CN,
∴∠BAE=∠B,∠CAN=∠C,
∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,
∴∠BAE+∠CAN=70°,
∴∠BAC=∠BAE+∠CAN+∠EAN=110°,
∵∠ADF=∠AMF=90°,
∴∠F=360°-∠ADF-∠AMF-∠BAC=360°-90°-90°-110°=70°;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.

(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.
(1)求证:EF=AE﹣BE;
(2)联结BF,如课
=
.求证:EF=EP.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,□ABCD中,∠ABC为锐角,AB<BC,点E是AD上的一点,延长CE到F,连接BF交AD于点G, 使∠FBC=∠DCE.
⑴ 求证:∠D=∠F;
⑵ 在直线AD找一点P,使以点B、P、C为顶点的三角形与以点C、D、P为顶点的三角形相似.(在原图中标出准确P点的位置,必要时用直尺和圆规作出P点,保留作图的痕迹,不写作法)

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,Rt△ABC中,若AC=4,BC=3,DE⊥AC,且DE=DB,求AD的长;
(2)如图2,已知△ABC,若AB边上存在一点M,若AC边上存在一点N,使MB=MN,且△AMN∽△ABC,请利用没有刻度的直尺和圆规,作出符合条件的线段MN(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫作互补等对边四边形.如图②,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形.试说明:∠ABD=∠BAC=
∠E.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF是△ABC的子三角形,如图.
(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.
求证:△DEF是△ABC的子三角形.
(2)已知:如图2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=
,求CF和AD的长.
相关试题