【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=
(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
![]()
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
参考答案:
【答案】(1)yA=﹣20x+1000;
(2)B组材料的温度是164℃;
(3)当x=20时,两组材料温差最大为100℃.
【解析】试题分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA-yB的函数关系式,进而求出最值即可.
试题解析:(1)由题意可得出:yB=
(x﹣60)2+m经过(0,1000),
则1000=
(0﹣60)2+m,
解得:m=100,
∴yB=
(x﹣60)2+100,
当x=40时,yB=
×(40﹣60)2+100,
解得:yB=200,
yA=kx+b,经过(0,1000),(40,200),
则
,
解得:
,
∴yA=﹣20x+1000;
(2)当A组材料的温度降至120℃时,
120=﹣20x+1000,
解得:x=44,
当x=44,yB=
(44﹣60)2+100=164(℃),
∴B组材料的温度是164℃;
(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣
(x﹣60)2﹣100=﹣
x2+10x=﹣
(x﹣20)2+100,
∴当x=20时,两组材料温差最大为100℃.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x、y的方程x|k|﹣1+(k﹣2)y =6是二元一次方程,则k=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:
班级
参加人数
中位数
平均数
方差
一
49
84
80
186
二
49
85
80
161
某同学分析后得到如下结论:
①一班与二班学生平均成绩相同;
②二班优生人数多于一班(优生线85分)
③一班学生的成绩相对稳定。其中正确的是( )
A. ①② B. ①③ C. ①②③ D. ②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的是_________(只填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求证:AD平分∠BAC;
(2)直接写出AB+AC与AE之间的等量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)

(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.
求证:△ABF≌△DAE;
(2)直接写出(1)中,线段EF与AF、BF的等量关系 ;
(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是 ,线段EF与AF、BF的等量关系是 ;
②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是 ;
(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,AF⊥BC,垂足为D.
(1)求证:∠BAE=∠CAD.
(2)若⊙O的半径为4,AC=5,CD=2,求CF.

相关试题