【题目】如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )![]()
A.2对
B.3对
C.4对
D.5对
参考答案:
【答案】C
【解析】解:∵四边形ABCD是正方形, ![]()
∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,
在△ABD和△BCD中,
,
∴△ABD≌△BCD,
∵AD∥BC,
∴∠MDO=∠M′BO,
在△MOD和△M′OB中,
,
∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,
∴全等三角形一共有4对.
故答案为:C.
根据正方形的性质,四条边相等,四个角相等,对边平行,由四边形ABCD是正方形,得到△ABD≌△BCD(SAS)、△MDO≌△M′BO(AAS),△NOD≌△N′OB,△MON≌△M′ON′,所以全等三角形一共有4对.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P为定角∠AOB的平分线上的一个定点,点M,N分别在射线OA,OB上(都不与点O重合),且∠MPN与∠AOB互补.若∠MPN绕着点P转动,那么以下四个结论:①PM=PN恒成立;②MN的长不变;③OM+ON的值不变;④四边形PMON的面积不变.其中正确的为_____.(填番号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】早晨
点,小明乘车从学校出发,去卧龙大熊猫自然保护区参观,当天按原路返回.如图,是小明出行的过程中,他距卧龙大熊猫自然保护区的距离
(千米)与他离校的时间
(小时)之间的图象.根据图象,完成下面问题:(1)小明乘车去保护区的速度是_________千米/小时,
线段所表示的
与
的关系式是_________;(2)已知下午
点,小明距保护区
千米,问他何时才能回到学校?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形
中,
,
,
,
是
边上的中线,过点
作
垂足为
,
交线段
于点
,交
于点
,连接
.(1)求证:
;(2)探索线段
和
之间的数量关系,并证明你的结论;(3)当
等于多少度时,点
恰好为
中点?
-
科目: 来源: 题型:
查看答案和解析>>【题目】y=
x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )
A.没有实数根
B.有一个实数根
C.有两个不相等的实数根
D.有两个相等的实数根 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于
的不等式组
整数解为1、2,如果把适合这个不等式组的整数
组成有序数对
,那么对应在平面直角坐标系上的点共有的个数为_______. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(
,0),有下列结论:①abc>0;
②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0; ⑤a﹣b≥m(am﹣b);
其中所有正确的结论是( )
A.①②③
B.①③④
C.①②③⑤
D.①③⑤
相关试题