【题目】以下列长度的线段为边能构成三角形的是( )
A. 1 cm,2 cm,3 cm B. 2 cm,3 cm,4 cm
C. 4 cm,4 cm,9 cm D. 1 cm,2 cm,4 cm
参考答案:
【答案】B
【解析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
解答:
A. 1+2=3,不能组成三角形;故A选项错误;
B. 43<2<4+3,能组成三角形;故B选项正确;
C. 4+4<9,不能组成三角形;故C选项错误;
D.1+2<4,不能组成三角形;故D选项错误;
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元
(1)求甲、乙两种机器每台各多少万元?
(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?
(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案? -
科目: 来源: 题型:
查看答案和解析>>【题目】在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2
的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a3m=3,b3n=2,求(a2m)3+(bn)3-a2m·bn·a4m·b2n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个十二边形的每个内角都是相等的,那么这个内角的度数是 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )
A.y=2(x+1)2+3
B.y=2(x﹣1)2﹣3
C.y=2(x+1)2﹣3
D.y=2(x﹣1)2+3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是线段AB的中点,C是线段AB的垂直平分线上的一点,DE⊥AC于点E,DF⊥BC于点F.
(1)求证:DE=DF;
(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.

相关试题