【题目】
![]()
(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
参考答案:
【答案】(1)见解析;(2)见解析;(3)100
米.
【解析】
试题分析:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,
,∴△CAD≌△EAB(SAS),∴BE=CD;
(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,
,∴△CAD≌△EAB(SAS),∴BE=CD;
(3)由(1)、(2)的解题经验可知,过A作等腰直角△ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100
米,连接CD,BD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100
米,根据勾股定理得:CD=
=100
米,则BE=CD=100
米.
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a、b、c是△ABC的三边,a、b使等式a2+b2﹣4a﹣8b+20=0成立,且c是偶数,求△ABC的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,∠A=45°,∠B=46°,那么△ABC的形状为( )
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲型H1N1流感病毒的直径约是0.00000011米,用科学记数法表示为___________米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.

(1)当x≥50时,求y关于x的函数关系式;
(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;
(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收
元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量. -
科目: 来源: 题型:
查看答案和解析>>【题目】今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:

(1)本次模拟测试共抽取了多少个学生?
(2)将图乙中条形统计图补充完整;
(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是( )
A. ﹣3<x<1 B. x<﹣1或x>3 C. ﹣1<x<3 D. x<﹣3或x>1
相关试题