【题目】计算
(1)x3x4x5
(2)
;
(3)(﹣2mn2)2﹣4mn3(mn+1);
(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2
参考答案:
【答案】(1)x12;(2)﹣12x2y3+2x4y3;(3)﹣4mn3;(4)﹣a5b2﹣6a3.
【解析】
(1)直接用同底数幂的乘法公式计算即可;
(2)用单项式乘以多项式法则进行运算;
(3)先乘方,再乘法,最后合并同类项;
(4)先乘方,再乘法,最后合并同类项.
(1)原式=x3+4+5=x12;
(2)原式=(﹣6xy)×2xy2+(﹣6xy)(﹣
x3y2)=﹣12x2y3+2x4y3;
(3)原式=4m2n4﹣4m2n4﹣4mn3=﹣4mn3;
(4)3a5b2﹣6a3﹣4a×(a4b2)=3a5b2﹣6a3﹣4a5b2=﹣a5b2﹣6a3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
4台
1200元
第二周
5台
6台
1900元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠AOC=∠BOD=120°,∠BOC=
∠AOD.(1)求∠AOD的度数;
(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;
(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知线段AD=80,点B、点C都是线段AD上的点.
(1)如图1,若点M为AB的中点,点N为BD的中点,求线段MN的长;
(2)如图2,若BC=10,点E是线段AC的中点,点F是线段BD的中点,求EF的长;
(3)如图3,若AB=5,BC=10,点P、Q分别从B、C出发向点D运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t秒,点E为AQ的中点,点F为PD的中点,若PE=QF,求t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
过A(2,3),B(4,3),C(6,﹣5)三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足
,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;
②方程
的两个根是x1=﹣1,x2=3;③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,E为CA延长线上一点,D为AB上一点,F为
外一点且
连接DF,BF.
(1)当
的度数是多少时,四边形ADFE为菱形,请说明理由:(2)当AB= 时,四边形ACBF为正方形(请直接写出)
相关试题