【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:
速度v(千米/小时) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(辆/小时) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上正确答案的序号)①
②
③ ![]()
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足
,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当
时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值
参考答案:
【答案】
(1)③
(2)
解:∵q=-2v2+120v=-2(v-30)2+1800.
∴当v=30时,q最大=1800.
(3)
解:①∵q=vk,
∴k=
=
=-2v+120.
∴v=-
k+60.
∵12≤v<18,
∴12≤-
k+60<18.
解得:84<k≤96.
②∵当v=30时,q最大=1800.
又∵v=-
k+60,
∴k=60.
∴d=
=
.
∴流量最大时d的值为
米.
【解析】(1)解:设q与v的函数关系式为q=av2+bv,依题可得:
,
解得
,
∴q=-2v2+120v.
所以答案是③.
【考点精析】利用二次函数的最值对题目进行判断即可得到答案,需要熟知如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在下列表格中填上相应的值
x
…
-6
-4
-3
-2
-1
1
2
3
4
6
…

…
-1
-2
3
1
…


(2)若将上表中的变量
用y来代替(即有
),请以表中的
的值为点的坐标, 在下方的平面直角坐标系描出相应的点,并用平滑曲线顺次连接各点(3)在(2)的条件下,可将y看作是x的函数 ,请你结合你所画的图像,写出该函数图像的两个性质 :__________________________________________________.
(4)结合图像,借助之前所学的函数知识,直接写出不等式
的解集: ____________ -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)方法回顾:在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在
中,延长
(
分别是
的中点)到点
,使得
,连接
;第二步证明
,再证四边形
是平行四边形,从而得出三角形中位线的性质结论:____________________________________(请用DE与BC表示)
(2)问题解决:如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.

(3)拓展研究:如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=
,DF=2,∠GEF=90°,求GF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程
,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程
的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程
的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当
,
,
,
与a,b,c之间满足怎样的关系时,点P(
,
),Q(
,
)就是符合要求的一对固定点? -
科目: 来源: 题型:
查看答案和解析>>【题目】下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;
(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;
(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.
(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列有理数大小关系判断正确的是( )
A. 0>|﹣10| B. ﹣(﹣
)>﹣|﹣
| C. |﹣3|<|+3| D. ﹣1>﹣0.01 -
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,
的三个顶点的位置如图所示,现将
平移,使点A变换为点A′,点B′,C′,分别是B,C的对应点.(1)请画出平移后的
,并求
的面积;(2)试说明△A'B'C'是如何由△ABC平移得到的;
(3)若连接AA′,CC′,则这两条线段之间的关系是 .

相关试题