【题目】如图所示,直线y=x+b与双曲线y=
(x<0)交于点A(﹣1,﹣5),并分别与x轴、y轴交于点C、B.
(1)求出b、m的值;
(2)点D在x轴的正半轴上,若以点D、C、B组成的三角形与△OAB相似,试求点D的坐标.
![]()
参考答案:
【答案】(1)b=﹣4,m=5;(2)D点坐标为:(6,0),(20,0).
【解析】试题分析:(1)将A坐标代入y=x+b,求出b的值,将点A的坐标代入双曲线解析式中,求出m的值即可;(2)如图所示,过点A作AE⊥y轴于点E,根据已知条件易得∠BCD=∠ABO=135°,再求得AB=
,BO=4,BC=4
,分△AOB∽BD′C和△AOB∽DBC两种情况求点D的坐标即可.
试题解析:
(1)∵直线y=x+b的双曲线y=
交于点A(﹣1,﹣5),
∴﹣1+b=﹣5,m=(﹣1)×(﹣5)=5,
∴解得:b=﹣4,m=5;
(2)如图所示:过点A作AE⊥y轴于点E,
∵CO=OB=4,∠COB=90°,
∴∠OBC=∠OCB=45°,
∴∠ABE=45°,∠BCD=135°,
∴∠ABO=135°,
∵AB=
=
,BO=4,BC=4
,
当△AOB∽DBC时,
=
,
∴
=
,
解得:CD=2,
∴DO=6,
∴D点坐标为:(6,0);
当△AOB∽BD′C时,
=
,
∴
=
,
解得:CD′=16,
∴D′O=16+4=20,
∴D′点坐标为:(20,0),
综上所述,符合要求的D点坐标为:(6,0),(20,0).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点C是直线AB上一点,AC=6cm,BC=4cm,点M、N分别是AC、BC的中点;
(1)如图,点C在线段AB上,求线段MN的长;
(2)若点C在线段AB的延长线上,其他条件不变,则线段MN的长为_______cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用同样大小的黑色棋子按如图所示的规律摆放:

(1)分别写出第6、7两个图形各有多少颗黑色棋子?
(2)写出第n个图形黑色棋子的颗数?
(3)是否存在某个图形有1020颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
【1】请将两幅统计图补充完整;
【2】在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;
【3】根据统计结果,请你简单谈谈自己的看法.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图不完整的条形统计图和扇形统计图(部分信息未给出)
(1)求本次调查学生的人数.
(2)求喜爱足球、跑步的人数,并补全条形统计图;
(3)求喜爱篮球、跑步的人数占调查人数的百分比.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).
(1)观察一个等比列数1,
,…,它的公比q= ;如果an(n为正整数)表示这个等比数列的第n项,那么a18= ,an= ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:
令S=1+2+4+8+16+…+230…①
等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以

请根据以上的解答过程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,AB=4,点E是BC上一点,且tan∠BAE=
,点F是CD的中点,连接AE、BF将△ABE着点E按顺时针方向旋转,使点B落在BF上的B1处位置处,点A经过旋转落在A1点位置处,连接AA1交BF于点N.(1)求证:∠BFC=∠A1 B1F;
(2)说明点N是AA1的中点;
(3)求AN的长.

相关试题