【题目】如图,在△ABC的边AB,AC的外侧分别作等边△ABD和等边△ACE,连接DC,BE.
(1)求证:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于点B,请求出△ABC的面积.
![]()
参考答案:
【答案】(1)见解析(2)3
【解析】
⑴根据等边三角形的性质得AB=AD,AE=AC, ∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC,根据SAS证得 △ABE≌△ADC,得到DC=BE.
⑵过点A作AH⊥BC于H ,BD⊥BC,得到∠ACB=90°-∠ABD=90°-60°=30°
2AH=AB,得出AH,BC已知,根据三角形面积即可求出.
(1)证明: ∵等边△ABD和等边△ACE
∴AD=AB,AE=AC,∠DAB=∠EAC=60°
∴∠DAC=∠EAB
∴△DAC ≌△BAE
∴DC=BE
(2) 过点A作AH⊥BC于H
∵BD⊥BC
∴∠DBC=90°
∵等边△ABD
∴∠DBA=60° ,AB=BD=3
∴∠ABC=30°
∵AH⊥BC
∴AH=
= ![]()
∴△ABC的面积=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD中,AB=3,AD=6,点E是边AD上的一个动点,把△BAE沿BE折叠,若点A的对应点A′恰落在矩形ABCD的对称轴上,则AE=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,
是
内的一点.
(1)如图,
平分
交
于点
,点
在线段
上(点
不与点
、
重合),且
,求证:
.(2)如图,若
是等边三角形,
,
,以
为边作等边
,连
.当
是等腰三角形时,试求出
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连接AD,AC,BC,BD,若AD=AC=AB,则下列结论:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等边三角形,④∠BCD的度数为150°,其中正确的个数是( )

A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:
①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=
CDOA;⑤∠DOC=90°,其中正确的是_____.(只需填上正确结论的序号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

-
科目: 来源: 题型:
查看答案和解析>>【题目】有甲乙两名采购员去同一家饲料公司分别购买两次饲料,两次购买饲料价格分别为m元/千克和n元/千克,且m≠n,两名采购员的采购方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.
(1)甲、乙所购饲料的平均单价各是多少?(用字母m、n表示)
(2)谁的购货方式更合算?
相关试题