【题目】在菱形ABCD中,∠BAD=60°
(1) 如图1,点E为线段AB的中点,连接DE、CE.若AB=4,求线段EC的长
(2) 如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论
(3) 在(2)的条件下,若AC=
,请你直接写出DM+CN的最小值
![]()
参考答案:
【答案】(1)EC=2
;(2)证明见解析;(3)2
【解析】
(1)如图1,连接对角线BD,先证明△ABD是等边三角形,根据E是AB的中点,由等腰三角形三线合一得:DE⊥AB,利用勾股定理依次求DE和EC的长;
(2)如图2,作辅助线,构建全等三角形,先证明△ADH是等边三角形,再由△AMN是等边三角形,得条件证明△ANH≌△AMD(SAS),则HN=DM,根据DQ是△CHN的中位线,得HN=2DQ,由等量代换可得结论.
(3)先判断出点N在CD的延长线上时,CN+DM最小,最小为CH,再判断出∠ACD=30°,即可用三角函数求出结论.
(1)如图1,连接BD,则BD平分∠ABC,
![]()
∵四边形ABCD是菱形,
∴AD∥BC,
∴∠A+∠ABC=180,
∵∠A=60,
∴∠ABC=120,
∴ABD是等边三角形,
∴BD=AD=4,
∵E是AB的中点,
由勾股定理得:DE=2
,
∵DC∥AB,
∴∠EDC=∠DEA=90,
在RtDEC中,
EC=2![]()
(2)如图2,延长CD至H,使CD=DH,连接NH、AH,
![]()
∵AD=CD,
∴AD=DH,
∵CD∥AB,
∴∠HDA=∠BAD=60,
∴ADH是等边三角形,
∴AH=AD, ∠HAD=60,
∵AMN是等边三角形,
∴AM=AN, ∠NAM=60,
∴∠HAN=∠DAM,
∴ANH≌AMD,
∴HN=DM,
∵D是CH的中点,Q是NC的中点,
∴DQ是CHN的中位线,
∴HN=2DQ,
∴DM=2DQ
(3) 如图2,由(2)知,HN=DM,
∴要CN+DM最小,便是CN+HN最小,
即:点C,H,N在同一条线上时,CN+DM最小,
此时,点D和点Q重合,
即:CN+DM的最小值为CH,
如图3,
![]()
由(2)知,△ADH是等边三角形,
∴∠H=60°.
∵AC是菱形ABCD的对角线,
∴∠ACD=
∠BCD=
∠BAD=30°,
∴∠CAH=180°-30°-60°=90°,
在Rt△ACH中,CH=
=2,
∴DM+CN的最小值为2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形
的对角线
相交于点
.
(1)求证:四边形
为菱形;(2)
垂直平分线段
于点
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点
是正方形
对角线
上一点,
于
,点
、
分别是
、
的中点.
(1)求证:
;(2)当点
在对角线
(不含
、
两点)上运动时,
是否为定值?如果是,请求其值;如果不是,试说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.

(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,点A(0,4),点B(m,0),以AB为边在右侧作正方形ABCD.
(1)当点B在x轴正半轴上运动时,求点C点的坐标.(用m表示)
(2)当m=0时,如图2,P为OA上一点,过点P作PM⊥PC,PM=PC,连MC交OD于点N,求AM+2DN的值;
(3)如图3,在第(2)问的条件下,E、F分别为CD、CO上的点,作EG∥x轴交AO于G,作FH∥y轴交AD于H,K是EG与FH的交点.若S四边形KFCE=2S四边形AGKH,试确定∠EAF的大小,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点
顺时针旋转90
后,得到△ACF,连接DF.下列结论中:①∠DAF=45° ②△
≌△
③AD平分∠EDF ④
;正确的有______________(填序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=5,AD=4,BD=DC=3,且DE⊥AB于E,DF⊥AC于点F.

(1)请写出与A点有关的三个正确结论;
(2)DE与DF在数量上有何关系?并给出证明.
相关试题