【题目】如图,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如图①,求证:DE∥BC;
(2)若将图①改变为图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.
![]()
参考答案:
【答案】见解析
【解析】(1)首先证明∠1+∠3+∠2+∠4=180°,进而证明∠D+∠B=180°,即可解决问题.
(2)如图,作辅助线,证明∠AEC+∠ACE+∠3+∠4=180°,即可解决问题.
试题解析:(1)如图1,
![]()
∵∠1=∠3,∠2=∠4,
∴∠1+∠3+∠2+∠4=2(∠1+∠2),
∵∠1+∠2=90°,
∴∠1+∠3+∠2+∠4=180°;
∵∠D+∠B+∠1+∠3+∠2+∠4=360°,
∴∠D+∠B=180°,
∴DE∥BC.
(2)成立.
如图2,连接EC;
![]()
∵∠1=∠3,∠2=∠4,且∠1+∠2=90°,
∴∠3+∠4=∠1+∠2=90°;
∵∠EAC=90°,
∴∠AEC+∠ACE=180°-90°=90°,
∴∠AEC+∠ACE+∠3+∠4=180°,
∴DE∥BC,
即(1)中的结论仍成立.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的是( )
A.延长射线OA到点B
B.线段AB为直线AB的一部分
C.射线OM与射线MO表示同一条射线
D.一条直线由两条射线组成 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
(1)求该抛物线所对应的函数关系式;
(2)设抛物线上的一个动点P的横坐标为t(0<t<3),过点P作PD⊥BC于点D. ① 求线段PD的长的最大值;② 当BD=2CD时,求t的值;
(3)若点Q是抛物线的对称轴上的动点,抛物线上存在点M,使得以B、C、Q、M为顶点的四边形为平行四边形,请求出所有满足条件的点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及S四边形ABDC.
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC?若存在这样一点,求出点Q的坐标;若不存在,试说明理由.
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),给出下列结论:①
的值不变,②
的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若a、b、c、d是成比例线段,其中a=5,b=2.5,c=8,则线段d的长为( )
A.2B.4C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】若xm+1+1+2(m﹣1)x+1=0是关于x的一元二次方程,则m的值是( )
A.﹣1B.0C.1D.2
相关试题