【题目】材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反过来,也成立.
材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1 与L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反过来,也成立
应用举例
已知直线y=﹣
x+5与直线y=kx+2互相垂直,则﹣
k=﹣1.所以k=6
解决问题
(1)请写出一条直线解析式______,使它与直线y=x﹣3平行.
(2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.
![]()
参考答案:
【答案】(1)y=x;(2)当线段PA的长度最小时,点P的坐标为
.
【解析】
(1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;
(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=
x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.
.解:(1)∵两直线平行,
∴k1=k2=1,b1≠b2=﹣3,
∴该直线可以为y=x.
故答案为:y=x.
(2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.
∵直线PA与直线y=﹣3x+2垂直,
∴设直线PA的解析式为y=
x+b.
∵点A(﹣1,0)在直线PA上,
∴
×(﹣1)+b=0,解得:b=
,
∴直线PA的解析式为y=
x+
.
联立两直线解析式成方程组,得:
,解得:
.
∴当线段PA的长度最小时,点P的坐标为(
,
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.
(1)求甲楼的高度及彩旗的长度;(精确到0.01m)
(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)
(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一根绳子对折以后用线段
表示,现从
处将绳子剪断,剪断后的各段绳子中最长的一段为
,若
,则这条绳子的原长为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过
上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=
,AH=3
,求EM的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.
(1)求直线AD的解析式;
(2)若E为y轴上的点,求△EBC周长的最小值;
(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )

A. 50,50 B. 50,30 C. 80,50 D. 30,50
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点。

(1)若线段AB=a,CE=b,且
,求a,b的值;(2)在(1)的条件下,求线段CD的长.
相关试题