【题目】今年植树节期间,某景观园林公司购进一批成捆的,
两种树苗,每捆
种树苗比每捆
种树苗多10棵,每捆
种树苗和每捆
种树苗的价格分别是630元和600元,而每棵
种树苗和每棵
种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进
种树苗和
种树苗各多少棵?并求出最低费用.
【答案】(1)这一批树苗平均每棵的价格是20元;(2)购进种树苗3500棵,
种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
【解析】
(1)设这一批树苗平均每棵的价格是元,分别表示出两种树苗的数量,根据“每捆
种树苗比每捆
种树苗多10棵”列方程即可求解;
(2)设购进种树苗
棵,这批树苗的费用为
,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.
解:(1)设这一批树苗平均每棵的价格是元,
根据题意,得,
解之,得.
经检验知,是原分式方程的根,并符合题意.
答:这一批树苗平均每棵的价格是20元.
(2)由(1)可知种树苗每棵价格为
元,种树苗每棵价格为
元,
设购进种树苗
棵,这批树苗的费用为
,则
.
∵是
的一次函数,
,
随着
的增大而减小,
,
∴当棵时,
最小.此时,
种树苗有
棵,
.
答:购进种树苗3500棵,
种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
科目:初中数学 来源: 题型:
【题目】已知抛物线,
,
,…,
(n为正整数),点A(0,1).
(1)如图1,过点A作y轴垂线,分别交抛物线,
,
,…,
于点
,
,
,…,
(
和点A不重合).
①求的长.
②求的长.
(2)如图2,点P从点A出发,沿y轴向上运动,过点P作y轴的垂线,交抛物线于点
,
,交抛物线
于点
,
,交抛物线
于点
,
,……,交抛物线
于点
,
(
在第二象限).
①求的值.
②求的值.
(3)过x轴上的点Q(原点除外),作x轴的垂线分别交抛物线,
,
,…,
于点
,
,
,…,
,是否存在线段
(i,j为正整数),使
,若存在,求出i+j的最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交x轴于
,
两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作
轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作,垂足为点N.设M点的坐标为
,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果将△ABC与△DEF各分割成两个三角形,且△ABC所分的两个三角形与△DEF所分的两个三角形分别对应相似,那么称△ABC与△DEF互为“近似三角形”,将每条分割线称为“近似分割线”.
(1)如图1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,请判断这两个三角形是否互为“近似三角形”?如果是,请直接在图1中画出一组分割线,并注明分割后所得两个小三角形锐角的度数;若不是,请说明理由.
(2)判断下列命题是真命题还是假命题,若是真命题,请在括号内打“√”;若是假命题,请在括号内打“×”.
①任意两个直角三角形都是互为“近似三角形” ;
②两个“近似三角形”只有唯一的“近似分割线” ;
③如果两个三角形中有一个角相等,那么这两个三角形一定是互为“近似三角形” .
(3)如图2,已知△ABC与△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判断这两个三角形是否互为“近似三角形”?如果是,请在图2中画出不同位置的“近似分割线”,并直接分别写出“近似分割线”的和;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.
活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.
(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.
(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.
活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).
(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com