【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
![]()
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).
参考答案:
【答案】(1)证明见解析(2)![]()
【解析】
试题分析:(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.
(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.
(1)证明:∵⊙O切BC于D,
∴OD⊥BC,
∵AC⊥BC,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠CAD,
即AD平分∠CAB;
(2)设EO与AD交于点M,连接ED.
∵∠BAC=60°,OA=OE,
∴△AEO是等边三角形,
∴AE=OA,∠AOE=60°,
∴AE=AO=OD,
又由(1)知,AC∥OD即AE∥OD,
∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,
∴S△AEM=S△DMO,
∴S阴影=S扇形EOD=
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=
的图象交于A、B两点,则四边形MAOB的面积为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则:①∠ABO的度数是 ;
②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(2)如图3,若AB⊥OM,则是否存在这样的X的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题是( )
A. 相等的角是直角
B. 若a⊥b,a⊥c,则b⊥c
C. 两直线平行,同位角互补
D. 互补的两个角不能都是锐角
-
科目: 来源: 题型:
查看答案和解析>>【题目】若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于( )
A. ﹣1B. 1C. 3D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面上有任意三点,过其中两点能画直线条数( )
A. 1 B. 3 C. 1或3 D. 无数条
相关试题