【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
![]()
参考答案:
【答案】(1)y=
x2﹣
x﹣3.(2)y=x﹣9.(3)存在,P1(
,
),P2(14,25).
【解析】
试题分析:(1)已知了A、B两点的坐标即可得出OA、OB的长,在直角三角形ACB中由于OC⊥AB,因此可用射影定理求出OC的长,即可得出C点的坐标.然后用待定系数法即可求出抛物线的解析式;(2)本题的关键是得出D点的坐标,CD平分∠BCE,如果连接O′D,那么根据圆周角定理即可得出∠DO′B=2∠BCD=∠BCE=90°,由此可得出D的坐标为(4,﹣5).根据B、D两点的坐标即可用待定系数法求出直线BD的解析式;(3)本题要分两种情况进行讨论:①过D作DP∥BC,交D点右侧的抛物线于P,此时∠PDB=∠CBD,可先用待定系数法求出直线BC的解析式,然后根据BC与DP平行,那么直线DP的斜率与直线BC的斜率相同,因此可根据D的坐标求出DP的解析式,然后联立直线DP的解析式和抛物线的解析式即可求出交点坐标,然后将不合题意的舍去,即可得出符合条件的P点.②同①的思路类似,先作与∠CBD相等的角:在O′B上取一点N,使BN=BM.可通过证△NBD≌△MDB,得出∠NDB=∠CBD,然后同①的方法一样,先求直线DN的解析式,进而可求出其与抛物线的交点即P点的坐标.综上所述可求出符合条件的P点的值.
试题解析:(1)∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴
.又∵A(﹣1,0),B(9,0),∴
,解得OC=3(负值舍去).∴C(0,﹣3),故设抛物线解析式为y=a(x+1)(x﹣9),∴﹣3=a(0+1)(0﹣9),解得a=
,∴二次函数的解析式为y=
(x+1)(x﹣9),即y=
x2﹣
x﹣3.(2)∵AB为O′的直径,且A(﹣1,0),B(9,0),∴OO′=4,O′(4,0),∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=
∠BCE=
×90°=45°,连接O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
AB=5.∴O′D⊥x轴,∴D(4,﹣5).∴设直线BD的解析式为y=kx+b,∴
,解得
,∴直线BD的解析式为y=x﹣9.(3)∵C(0,﹣3),设在抛物线上存在点P,使得∠PDB=∠CBD,设射线DP交⊙O′于点Q,则 弧BQ=弧CD.分两种情况(如图所示):①∵O′(4,0),D(4,﹣5),B(9,0),C(0,﹣3).∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,因此,点Q1(7,﹣4)符合 弧BQ=弧CD,∵D(4,﹣5),Q1(7,﹣4),∴用待定系数法可求出直线DQ1解析式为y=
x﹣
.解方程组
,得
或
,∴点P1坐标为(
,
),坐标为(
,
)不符合题意,舍去.②∵Q1(7,﹣4),∴点Q1关于x轴对称的点的坐标为Q2(7,4)也符合 弧BQ=弧CD,∵D(4,﹣5),Q2(7,4).∴用待定系数法可求出直线DQ2解析式为y=3x﹣17.解方程组
得
或
,∴点P2坐标为(14,25),坐标为(3,﹣8)不符合题意,舍去.∴符合条件的点P有两个:P1(
,
),P2(14,25).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.线段AB和线段BA表示的不是同一条线段
B.射线AB和射线BA表示的是同一条射线
C.若点P是线段AB的中点,则PA=
AB
D.线段AB叫做A、B两点间的距离 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为射线AB上一点,AB=30,AC比BC的
多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论: ①BC=2AC;②AB=4NQ;③当PB=
BQ时,t=12,其中正确结论的个数是( )
A.0
B.1
C.2
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】数据-5,-3,-3,0,1,3的众数是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一条直线上任取一点A,截取AB=20cm,再截取AC=18cm,M、N分别是AB、AC的中点,则M、N两点之间的距离为cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合题。
(1)计算:﹣12016+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣
)
(2)解方程:x﹣
=2﹣ 
(3)已知:A=
a﹣2(a﹣
b2),B=﹣
a+
b2 , 且|a+2|+(b﹣3)2=0,求2A﹣6B的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.
(1)求∠ABC的度数;
(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).
(参考数据:
≈1.414,
≈1.732)
相关试题