【题目】计算(-2)+(-3)的结果是( )
A. -1 B. -5 C. -6 D. 5
参考答案:
【答案】B
【解析】
根据同号两数相加的运算法则计算可得.
(-2)+(-3)=-(2+3)=-5,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为_____元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算中,错误的是( )
A.5a3﹣a3=4a3B.(﹣a)2a3=a5
C.(a﹣b)3(b﹣a)2=(a﹣b)5D.2m3n=6m+n
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=
,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正
边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

图1 图2
-
科目: 来源: 题型:
查看答案和解析>>【题目】顺次连接四边形ABCD四边中点得到新的四边形为菱形,那么原四边形ABCD为( )
A. 矩形
B. 菱形
C. 对角线相等的四边形
D. 对角线垂直的四边形
-
科目: 来源: 题型:
查看答案和解析>>【题目】多项式2x3﹣8x2y+8xy2分解因式的结果是_____.
相关试题