【题目】顺次连接四边形ABCD四边中点得到新的四边形为菱形,那么原四边形ABCD为( )
A. 矩形
B. 菱形
C. 对角线相等的四边形
D. 对角线垂直的四边形
参考答案:
【答案】C
【解析】试题分析:本题主要考查了中点四边形.重点利用了菱形的判定定理,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.根据三角形的中位线定理得到EH∥FG,EF=FG,EF=
BD,要是四边形为菱形,得出EF=EH,即可得到答案.
解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,
∴EF=
AC,EH∥AC,FG=
AC,FG∥AC,EF=
BD,
∴EH∥FG,EF=FG,
∴四边形EFGH是平行四边形,
∵一组邻边相等的四边形是菱形,
∴若AC=BD,则四边形是菱形.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.
(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=
,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(-2)+(-3)的结果是( )
A. -1 B. -5 C. -6 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正
边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

图1 图2
-
科目: 来源: 题型:
查看答案和解析>>【题目】多项式2x3﹣8x2y+8xy2分解因式的结果是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数
.(1) 若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;
(2) 如图,反比例函数
(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.
相关试题