【题目】如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为 . ![]()
参考答案:
【答案】25:9
【解析】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′, ![]()
∵△ABC与△A′B′C′都是等腰三角形,
∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,
∴AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,
∵∠B+∠B′=90°,
∴sinB=cosB′,sinB′=cosB,
∵S△BAC=
ADBC=
ABsinB2ABcosB=25sinBcosB,
S△A′B′C′=
A′D′B′C′=
A′B′cosB′2A′B′sinB′=9sinB′cosB′,
∴S△BAC:S△A′B′C′=25:9,
故答案为:25:9.
先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=ABsinB,A′D′=A′B′sinB′,BC=2BD=2ABcosB,B′C′=2B′D′=2A′B′cosB′,然后根据三角形面积公式即可得到结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=2x2﹣2
x+1与坐标轴的交点个数是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.

(1)求证:∠BDC=
∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;
(3)在(2)的条件下,若AF=BF,求∠EBA的大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D 为 AB的中点.
(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.
①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的
,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是( )米/分.A. 600 B. 400 C. 300 D. 150
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B在反比例函数y=
(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=2x2﹣2
x+1与坐标轴的交点个数是 .
相关试题