【题目】如图所示,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度)
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出线段OB旋转到OB2扫过图形的面积.
![]()
参考答案:
【答案】(1)见解析;(2)见解析, ![]()
【解析】试题分析:
(1)连接AO并延长至A1,使A1O=AO得到点A1,同法作出点B1、C1,顺次连接所得三点,即可得到所求三角形;
(2)过点O在AO的左侧作A2O⊥AO,使A2O=AO得到点A2,同法作出点B2、C2,顺次连接三点,即可得到所求三角形;由题意可知旋转过程中线段OB扫过的图形的面积就是扇形B2OB的面积,由题意可知∠B2OB=90°,再由勾股定理求出OB的长即可求得所求面积了.
试题解析:
(1)如下图,△
即为所求三角形;(2)①如下图,△
即为所求三角形;
![]()
②由题意可知:旋转过程中线段OB扫过的图形的面积就是扇形B2OB的面积,
∵∠B2OB=90°,OB=
,
∴S扇形B2OB=
.
∴旋转过程中线段OB扫过的图形的面积为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:
月均用水量(单位:吨
频数
频率
2≤x<3
4
0.08
3≤x<4
a
b
4≤x<5
14
0.28
5≤x<6
9
c
6≤x<7
6
0.12
7≤x<8
5
0.1
合计
d
1.00

(1)b= ,c= ,并补全频数分布直方图;
(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;
(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?
-
科目: 来源: 题型:
查看答案和解析>>【题目】有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.
(1)每辆大货车和每辆小货车一次各可以运货多少吨?
(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)
(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求证:AB⊥BD;
(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;
(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知点A(-2,0).点D在y轴上,连接AD并将它沿x轴向右平移至BC的位置,且点B坐标为(4,0),连接CD,OD=
AB.(1)线段CD的长为 ,点C的坐标为 ;
(2)如图2,若点M从点B出发,以1个单位长度/秒的速度沿着x轴向左运动,同时点N从原点O出发,以相同的速度沿折线OD→DC运动(当N到达点C时,两点均停止运动).假设运动时间为t秒.
①t为何值时,MN∥y轴;
②求t为何值时,S△BCM=2S△ADN.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】作图与探究(不写作法,保留作图痕迹,并用 0.5 毫米黑色签字笔描深痕迹) 如图,∠DBC 和∠ECB 是△ABC 的两个外角°
(1)用直尺和圆规分别作∠DBC 和∠ECB 的平分线,设它们相交于点 P;
(2)过点 P 分别画直线 AB、AC、BC 的垂线段 PM、PN、PQ,垂足 为 M、N、Q;
(3) PM、PN、PQ 相等吗?(直接写出结论,不需说明理由)

相关试题