【题目】(1)若
,则
(2)如图,CB∥OA,∠B=∠A=108°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA= 时。可以使∠OEB=∠OCA。
![]()
参考答案:
【答案】(1)-2014 (2)54°
【解析】分析: (1)方程移项变形后,得:a2-4a=1,a2=4a+1,再将代数式中的a3化为2a2a=2a(4a+1),达到降次的目的,合并同类项后,最后提取公因式,代入可得结论;
(2)由于BC∥OA,∠B=108°,易求∠AOB,而OE、OC都是角平分线,从而可求∠COE;设∠OCA=α,∠AOC=x,根据三角形的外角性质、三角形的内角和定理、平行线的性质可得,α+x=72°,36°+x=α,解即可.
详解: :(1)a2+4a-1=0,
移项得:a2+4a=1,a2=1-4a,
则2a3+11a2+10a-2017,
=2a(1-4a)+11a2+10a-2017,
=2a-8a+11a2+10a-2017,
=3a2+12a-2017,
=3(a2+4a)-2017,
=3×1-2017,
=-2014;
(2))∵CB∥OA,
∴∠BOA+∠B=180°,
∴∠BOA=180°-108°=72°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=
∠BOF+
∠FOA=
(∠BOF+∠FOA)=
×72°=36°;
在平行移动AC的过程中,存在∠OEB=∠OCA,
设∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=36°+x,
∠ACO=72°-x,
∴α=72°-x,36°+x=α,
72-x=36+x,
∴x=18°,α=54°.
即:当∠OCA=54度时.可以使∠OEB=∠OCA.
点睛: 本题考查了因式分解的应用、平行线的性质、角平分线的定义及平移的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,点 M 在第四象限,它到 x 轴的距离为 6,到 y 轴的距离为 3,则点 M的坐标为________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1 cm/s的速度沿BC向点C运动,设点P的运动时间为ts.
(1)PC= cm(用含t的代数式表示)
(2)当t为何值时,△ABP≌△DCP,请说明理由
(3)如图②,当点P从点B开始运动时,点Q从点C出发,以a cm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式,并把解集在数轴上表示出来:
(1)5x﹣6≤2(x+3);
(2)

-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
相关试题