【题目】如图,
中,
,点
从点
出发沿射线
移动,同时,点
从点
出发沿线段
的延长线移动,已知点
、
的移动速度相同,
与直线
相交于点
.
![]()
(1)如图1,当点
在线段
上时,过点
作
的平行线交
于点
,连接
、
,求证:点
是
的中点;
(2)如图2,过点
作直线
的垂线,垂足为
,当点
、
在移动过程中,线段
、
、
有何数量关系?请直接写出你的结论: .
参考答案:
【答案】(1)见解析;(2)
或
.
【解析】
(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;
(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.
(1)四边形CDGE是平行四边形.理由如下:
∵D、E移动的速度相同,
∴BD=CE,
∵DG∥AE,
∴∠DGB=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DGB,
∴BD=GD=CE,
又∵DG∥CE,
∴四边形CDGE是平行四边形;
(2)当点D在AB边上时,BM+CF=MF;理由如下:
如图2,
![]()
由(1)得:BD=GD=CE,
∵DM⊥BC,
∴BM=GM,
∵DG∥AE,
∴GF=CF,
∴BM+CF=GM+GF=MF.
同理可证,当D点在BA的延长线上时,可证
, 如图3,4.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“完美数”。例如5是“完美数”,因为5=22+12,再如M=x2+2xy+2y2=(x+y)2 +y2(x、y是正整数),所以M也是“完美数”。
(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;
(2)试判断(x2+9y2)(4y2+x2)(x、y是正整数)是否为“完美数”,并说明理由;
(3)已知S=x2+4y2+4x-12y+k(x、y是正整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:
,当
时,整式的值为0,所以,多项式有因式
,设
,展开后可得
,所以
,根据上述引例,请你分解因式:(1)
;(2)
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AC为直径作
交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证: EF与
相切;(2)若AE=6,
,求EB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与
轴交于点
,与
轴交于点
;直线
与
轴交于点
,与直线
交于点
,且点
的纵坐标为4.
(1)不等式
的解集是 ;(2)求直线
的解析式及
的面积;(3)点
在坐标平面内,若以
、
、
、
为顶点的四边形是平行四边形,求符合条件的所有点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上). 已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果精确到0.1m)
(参考数据:
,
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位km)

(1)这辆出租车第三次行驶完后在离出发点的 方向;经过连续4次行驶后,这辆车所在的位置 (结果用表示);
(2)这辆出租车一共行驶了多少路程(结果用表示);当x=8时,出租车行驶的路程是多少 .
相关试题