【题目】如图四边形ABCD是一块草坪,量得四边长AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求这块草坪的面积. ![]()
参考答案:
【答案】解:在Rt△ABC中,AB=3m,BC=4m,∠B=90° 由勾股定理得AB2+BC2=AC2
∴AC=5m
在△ADC中,AC=5m,DC=12m,AD=13m
∴AC2+DC2=169,AD2=169
∴AC2+DC2=AD2
∠ACD=90°
四边形的面积=SRt△ABC+SRt△ADC
= ![]()
= ![]()
=36(m2)
答:这块草坪的面积是36m2 . ![]()
【解析】连接AC,由∠B=90°,AB=3cm,BC=4cm可知AC=5cm;由AC、AD、CD的长可判断出△ACD是直角三角形,根据两三角形的面积可求出草坪的面积.
【考点精析】本题主要考查了三角形的面积的相关知识点,需要掌握三角形的面积=1/2×底×高才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在电影院里7排5号可以用(7,5)表示,那么(6,2)表示的是__排__号.
-
科目: 来源: 题型:
查看答案和解析>>【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分).
(1)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求矩形对角线的长和矩形的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km),y1 ,y2与x的函数关系图像如图①所示,s与x的函数关系图如图②所示:

图① 图②
(1)图中的a= ,b= .
(2)求s关于x的函数关系式.
(3)甲、乙两地间有E、F两个加油站,相距200km,若慢车进入加油站E时,快车恰好进入加油站F,请直接写出加油站E到甲地的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点M(a,-1)和N(2,b)不重合.
(1)当点M,N关于__对称时,a=2,b=1;
(2)当点M,N关于原点对称时,a=__,b=__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:

(1)四边形OCED是菱形.
(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.
相关试题