【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.
![]()
参考答案:
【答案】(1)证明见解析(2)证明见解析
【解析】分析:(1)由SAS证明△ABD≌△ACE,得出对应边相等即可
(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.
本题解析:
(1)证明:在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)得:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,
,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
点睛:本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,
是半圆
的直径,弦
,动点
、
分别在线段
、
上,且
,
的延长线与射线
相交于点
、与弦
相交于点
(点
与点
、
不重合),
,
.设
,
的面积为
.
(1)求证:
; (2)求
关于
的函数关系式,并写出
的取值范围(3)当
是直角三角形时,求线段
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;
(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.

(1)此变化过程中,__是自变量,__是因变量.
(2)甲的速度__乙的速度.(大于、等于、小于)
(3)6时表示__;
(4)路程为150km,甲行驶了__小时,乙行驶了__小时.
(5)9时甲在乙的__(前面、后面、相同位置)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.

相关试题