【题目】在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是_____.
参考答案:
【答案】y=﹣(x﹣1)2﹣2
【解析】
先求出抛物线的顶点坐标,再求出该点关于原点的对称点,即可求出旋转后的抛物线解析式.
解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),
所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.
故答案是:y=﹣(x﹣1)2﹣2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校园商店经销甲、乙两种文具. 现有如下信息:

请根据以上信息,解答下列问题:
(1)甲、乙两种文具的零售单价分别为 元和 元.(直接写出答案)
(2)该校园商店平均每天卖出甲文具50件和乙文具120件.经调查发现,甲种文具零售单价每降0.1元,甲种文具每天可多销售10件.为了降价促销,使学生得到实惠,商店决定把甲种文具的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,可以使商店每天销售甲、乙两种文具获取的利润保持不变?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:
体重频数分布表
组边
体重(千克)
人数
A
45≤x<50
12
B
50≤x<55
m
C
55≤x<60
80
D
60≤x<65
40
E
65≤x<70
16
(1)填空:①m=__(直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于__度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有__人,a+b=__,m=___;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目.以下是根据调查结果绘制的统计图表的一部分.

根据以上信息,解答下列问题:
(1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比为 %;
(2)被调查学生的总数为 人,统计表中
的值为 ,统计图中
的值为 ;(3)在统计图中,
类所对应扇形圆心角的度数为 ;(4)该校共有2000名学生,根据调查结果,估计该校最喜爱欣慰节目的学生数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将方程x2﹣6x+2=0配方后,原方程变形为( )
A. (x+3)2=﹣2B. (x﹣3)2=﹣2C. (x﹣3)2=7D. (x+3)2=7
相关试题