【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=30cm.点P从点A出发,以1cm/s的速度向点D移动,点Q从点C出发,以3cm/s的速度向点B运动,点P和点Q分别从点A和点C同时出发,移动时间为ts.规定若其中一个动点先到达端点(终点)时,另一个动点也随之停止运动.![]()
(1)求时间t的取值范围;
(2)当四边形ABQP为矩形时,求时间t的值;
(3)是否存在时间t的值,使得△APQ的面积是△ABC的面积的一半?若存在,请求出t的值,若不存在,说明理由.
参考答案:
【答案】
(1)解:点P停止的时间是24÷1=24s,点Q停止的时间是30÷3=10s,
所以时间t的取值范围是0≤t≤10
(2)解:由运动知,AP=t,CQ=3t,
∴BQ=30﹣3t,
若四边形ABQP是矩形.
∴AP=BQ.
即t=30﹣3t.
∴t=7.5.
(3)解:不存在.理由如下:
若△APQ的面积是△ABC的面积的一半时,
∴
AP×AB=
×AB×BC.
∴t=
×30=15.
∵t的取值范围是0≤t≤10.
∴不存在t的值,使得使得△APQ的面积是△ABC的面积的一半.
【解析】(1)根据运动速度是距离即可得出结论;(2)有矩形的性质得出AP=BQ,建立方程求解即可得出结论;(3)假设△APQ的面积是△ABC的面积的一半,求出时间,判断是否在0≤t≤10内,即可得出结论.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)如图,抛物线
与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为
.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】绝对值小于4的所有整数的和是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把多项式2xy-x2-y2分解因式的结果是( )
A. (x+y)2 B. -(x+y)2 C. (x-y)2 D. -(x-y)2
-
科目: 来源: 题型:
查看答案和解析>>【题目】水果市场中的甲、乙两家商店中都批发同一种水果,批发水果x千克时,在甲、乙两家商店的批发价分别为y1元和y2元,已知y1和y2关于x的函数图象分别为如图所示的折线OAB和射线OC.

(1)请求出y2与自变量x的函数解析式,并写出自变量x的取值范围;
(2)当乙商店的批发价比甲商店的批发价便宜时,根据函数图象直接写出自变量x的取值范围;
(3)如果批发30千克水果时,在甲店批发比在乙店批发便宜50元,求射线AB的函数解析式并写出自变量x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校就“遇见路人摔倒后如何处理”的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:

(1)该校随机抽查了 名学生?请将图1补充完整;
(2)在图2中,“视情况而定”部分所占的圆心角是 度;
(3)在这次调查中,甲、乙、丙、丁四名学生都选择“马上救助”,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
相关试题