【题目】如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°. ![]()
(1)请你判断∠1与∠BDC的数量关系,并说明理由;
(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.
参考答案:
【答案】
(1)猜想:∠1=∠BDC
证明:∵AD⊥EF,CE⊥EF,
∴∠GAD=∠GEC=90°
∴AD∥CE
∴∠ADC+∠3=180°
又∵∠2+∠3=180°,
∴∠2=∠ADC
∴AB∥CD
∴∠1=∠BDC
(2)解:解:∵AD⊥EF,
∴∠FAD=90°.
∵AB∥CD,
∴∠BDC=∠1=70°,
∵DA平分∠BDC,
∴∠ADC=
∠BDC=
×70°=35°.
∵AB∥CD,
∴∠2=∠ADC=35°,
∴∠FAB=∠FAD﹣∠2=90°﹣35°=55°
【解析】(1)先根据垂直的定义得出∠GAD=∠GEC=90°,故可得出AD∥CE,再由平行线的性质∠ADC+∠3=180°,据此可得出AB∥CD,进而可得出结论;(2)先根据平行线的性质得出∠BDC=∠1=70°,再由DA平分∠BDC得出∠ADC的度数,进而得出∠2的度数,由∠FAB=∠FAD﹣∠2即可得出结论.
【考点精析】认真审题,首先需要了解平行线的判定与性质(由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质).
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)先化简,再求值:
+(2x-1)(1-2x).其中x= 
(2) 求值:已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程3x﹣kx+2=0的解为2,则k的值为( )
A.4B.-4C.2D.3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.
(1)求证:AE=BC;
(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;
(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.
(1)求A、B两点的坐标;
(2)求直线BC的函数关系式;
(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列推理正确的是( )
A. ∵等腰三角形是轴对称图形 ,又∵等腰三角形是等边三角形,∴等边三角形是轴对称图形
B. ∵轴对称图形是等腰三角形, 又∵等边三角形是等腰三角形,∴等边三角形是轴对称图形
C. ∵等腰三角形是轴对称图形 ,又∵等边三角形是等腰三角形,∴等边三角形是轴对称图形
D. ∵等边三角形是等腰三角形, 又∵等边三角形是轴对称图形,∴等腰三角形是轴对称图形
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列四组多边形地板砖中:①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,能密铺地面的是( )
A.①③④ B.②③④ C.①②③ D.①②④
相关试题