【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.![]()
(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.![]()
参考答案:
【答案】
(1)
证明:连接OE
FE、FA是⊙O的两条切线
∴∠FAO=∠FEO=90°
在Rt△OAF和Rt△OEF中,
![]()
∴Rt△FAO≌Rt△FEO(HL),
∴∠AOF=∠EOF=
∠AOE,
∴∠AOF=∠ABE,
∴OF∥BE
![]()
(2)
解:过F作FQ⊥BC于Q
∴PQ=BP﹣BQ=x﹣y
PF=EF+EP=FA+BP=x+y
∵在Rt△PFQ中
∴FQ2+QP2=PF2
∴22+(x﹣y)2=(x+y)2
化简得:
,(1<x<2)
![]()
(3)
解:存在这样的P点,
理由:∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,
即∠EOF=30°时,Rt△EFO∽Rt△EHG,
此时Rt△AFO中,
y=AF=OAtan30°=
,
∴ ![]()
∴当
时,△EFO∽△EHG
【解析】(1)首先证明Rt△FAO≌Rt△FEO进而得出∠AOF=∠ABE,即可得出答案;(2)过F作FQ⊥BC于Q,利用勾股定理求出y与x之间的函数关系,根据M是BC中点以及BC=2,即可得出BP的取值范围;(3)首先得出当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,求出y=AF=OAtan30°=
,即可得出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=ax+b与双曲线y=
(x>0)交于A(x1 , y1),B(x2 , y2)两点(A与B不重合),直线AB与x轴交于P(x0 , 0),与y轴交于点C. 
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1 , x2 , x0之间的关系(不要求证明). -
科目: 来源: 题型:
查看答案和解析>>【题目】以图1(以O为圆心,半径1 的半圆)作为“基本图形”,分别经历如下变换能得到图2的序号是 (多填或错填得0分,少填酌情给分)
①只要向右平移1个 单位;
② 先以直线AB为对称轴进行对称变换,再向右平移1个单位;
③先绕着O旋转180°,再向右平移1个单位;
④只要绕着某点旋转180°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.

(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中 ,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF相 交于点H.
(1)∠HDE与∠HED是否相等?并说明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置关系?并仿照 (1)中的解答方法说明理由.
解: .理由如下:

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______

-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.

证明:∵AB∥CD,(已知)
∴∠_______=∠_______.___________________________
∵__________________________________________,(已知)
∴∠EBC=_______,(角平分线定义)
同理,∠FCB=______________.
∴∠EBC=∠FCB.(等式性质)
∴BE//CF.(_____________________________________)
相关试题