【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为ɑ.
(1)如图1,若ɑ=90°,求AA′的长;![]()
(2)如图2,若ɑ=120°,求点O′的坐标.![]()
参考答案:
【答案】
(1)
解:∵点A(4,0),点B(0,3),
∴OA=4,OB=3.
在Rt△ABO中,由勾股定理得AB=5.
根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,
由旋转是性质可得:∠A′BA=90°,A′B=AB=5,
∴AA′=5
.
(2)
解:如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3
过点O′作O′C⊥y轴,垂足为C,
![]()
则∠O′CB=90°.
在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.
∴BC=
O′B=
.
由勾股定理O′C=
,
∴OC=OB+BC=
.
∴点O′的坐标为(
,
).
【解析】(1)根据勾股定理得AB=5,由旋转性质可得∠A′BA=90°,A′B=AB=5.继而得出AA′=5
;(2)O′C⊥y轴,由旋转是性质可得:∠O′BO=120°,O′B=OB=3,在Rt△O′CB中,由∠O′BC=60°得BC、O′C的长,继而得出答案.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图
,大正方体上截去一个小正方体后,可得到图
的几何体.
设原大正方体的表面积为
,图
中几何体的表面积为
,那么
与
的大小关系是( )
、
、
、
、不确定
小明说:“设图
中大正方体各棱的长度之和为
,图
中几何体各棱的长度之和为
,那么
比
正好多出大正方体
条棱的长度.”若设大正方体的棱长为
,小正方体的棱长为
,请问
为何值时,小明的说法才正确?
如果截去的小正方体的棱长为大正方体棱长的一半,那么图
是图
中几何体的表面展开图吗?如有错误,请在图
中修正. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E、F、G、H分别在菱形ABCD的四条边上,且BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH.

(1)求证:四边形EFGH是矩形;
(2)设AB=a,∠A=60°,当BE为何值时,矩形EFGH的面积最大? -
科目: 来源: 题型:
查看答案和解析>>【题目】下面两个多位数1248624…… ,6248624…… ,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )
A. 495 B. 497 C. 501 D. 503
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.

(1)数轴上点A表示的数为________.
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?
②设点A的移动距离AA′=x.
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=
OO′,当点D,E所表示的数互为相反数时,求x的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+
与y轴相交于点A,点B与点O关于点A对称. 
(1)填空:点B的坐标为;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法: ①2a+b=0
②当﹣1≤x≤3时,y<0
③若(x1 , y1)、(x2 , y2)在函数图象上,当x1<x2时,y1<y2
④9a+3b+c=0
其中正确的是( )
A.①②④
B.①④
C.①②③
D.③④
相关试题