【题目】如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接GB,EF,求证:GB∥EF;
(3)若AE=1,EB=2,求DG的长.
![]()
参考答案:
【答案】(1)(2)见解析 (3)
.
【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=
AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
(1)证明:连接BD,
在Rt△ABC中,∠ABC=90°,AB=BC,
∴∠A=∠C=45°,
∵AB为圆O的直径,
∴∠ADB=90°,即BD⊥AC,
∴AD=DC=BD=
AC,∠CBD=∠C=45°,
∴∠A=∠FBD,
∵DF⊥DG,
∴∠FDG=90°,
∴∠FDB+∠BDG=90°,
∵∠EDA+∠BDG=90°,
∴∠EDA=∠FDB,
在△AED和△BFD中,
∠A=∠FBD,AD=BD,∠EDA=∠FDB,
∴△AED≌△BFD(ASA),
∴AE=BF;
(2)证明:连接EF,BG,
![]()
∵△AED≌△BFD,
∴DE=DF,
∵∠EDF=90°,
∴△EDF是等腰直角三角形,
∴∠DEF=45°,
∵∠G=∠A=45°,
∴∠G=∠DEF,
∴GB∥EF;
(3)∵AE=BF,AE=1,
∴BF=1,
在Rt△EBF中,∠EBF=90°,
∴根据勾股定理得:EF2=EB2+BF2,
∵EB=2,BF=1,
∴EF=
,
∵△DEF为等腰直角三角形,∠EDF=90°,
∴cos∠DEF=
,
∵EF=
,
∴DE=
×
,
∵∠G=∠A,∠GEB=∠AED,
∴△GEB∽△AED,
∴
,即GEED=AEEB,
∴
GE=2,即GE=
,
则GD=GE+ED=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3、…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2016B2016C2016D2016的边长是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示.根据以上统计图提供的信息,回答下列问题:
种类
A
B
C
D
E
不良习惯
睡前吃水果喝牛奶
用牙开瓶盖
常喝饮料嚼冰
常吃生冷零食
磨牙

(1)这个班有多少名学生?
(2)这个班中有C类用牙不良习惯的学生多少人?占全班人数的百分比是多少?
(3)请补全条形统计图;
(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=2x+4的图象与y轴交点的坐标是( )
A.(0,﹣4)
B.(0,4)
C.(2,0)
D.(﹣2,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解:a2+3a= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(0.2x-0.3)(0.2x+0.3);
(2)(2a3b2-4a4b3+6a5b4)÷(-2a3b2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:(3x+2y)2-(3x-2y)2+2(x+y)(x-y)-2x(x+4y),其中x=1,y=-1.
相关试题