【题目】设
,
是关于
的一元二次方程
的两实根,
的最小值是________.
参考答案:
【答案】![]()
【解析】
设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,首先:△=(2a)2-4(a2+4a-2)≥0可求得a≤
,得到了关于a的取值范围.对要求值的式子化简:x12+x22=(x1+x2)2-2x1x2=2(a-2)2-4,设y=2(a-2)2-4,这是一个关于a的一元二次方程,其对称轴是a=2,开口方向向上.根据开口向上的二次函数的性质:距对称轴越近,其函数值越小.故在a≤
的范围内,当a=
时,x12+x22的值最小;此时
+
=2(
2)24=
,即最小值为
.
:∵△=(2a)2-4(a2+4a-2)≥0,∴a≤![]()
又∵x1+x2=-2a,x1x2=a2+4a-2.
∴x12+x22=(x1+x2)2-2x1x2=2(a-2)2-4.
设y=2(a-2)2-4,根据二次函数的性质.
∵a≤![]()
∴当a=
时,x12+x22的值最小.
此时
+
=2(
2)24=
,即最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=-
x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.(1)求A、B两点的坐标;
(2)求直线AM的表达式;
(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读理解)
截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:延长DC到点E,使CE=BD.连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.
根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是___________
(拓展延伸)
(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
(知识应用)
(3)如图3,一副三角尺斜边长都为14cm,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ的长为________cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在线段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°—∠ABC—2x°,则下列角中,大小为x°的角是

A.∠EFCB.∠ABCC.∠FDCD.∠DFC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在
中,
,
,
,点
、
同时由
、
两点分别沿
、
方向向点
匀速移动,它们的速度都是
,设
秒后
的面积为
面积的一半.则方程(一般形式)为:________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知锐角∠MPN,依照下列步骤进行尺规作图:
(1)在射线PN上截取线段PA;
(2)分别以P,A为圆心,大于
PA的长为半径作弧,两弧相交于E,F两点;(3)作直线EF,交射线PM于点B;
(4)在射线AN上截取AC=PB;
(5)连接BC.
则∠BCP与∠MPN之间的数量关系是_______________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠C=90°,D是边BC上一点,连接AD,若∠BAD+3∠CAD=90°,DC=a,BD=b,则AB=________. (用含a,b的式子表示)
相关试题