【题目】如图,直线y=
x+2与双曲线相交于点A(m,3),与x轴交于点C.![]()
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.
参考答案:
【答案】
(1)
解:把A(m,3)代入直线解析式得:3=
m+2,即m=2,
∴A(2,3),
把A坐标代入y=
,得k=6,
则双曲线解析式为y= ![]()
(2)
解:对于直线y=
x+2,令y=0,得到x=﹣4,即C(﹣4,0),
设P(x,0),可得PC=|x+4|,
∵△ACP面积为3,
∴
|x+4|3=3,即|x+4|=2,
解得:x=﹣2或x=﹣6,
则P坐标为(﹣2,0)或(﹣6,0).
【解析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点E为正方形ABCD边BC上的一点,点G为BC延长线一点,连接AE,过点E作AE⊥EF,且AE=EF,连接CF.
(1)如图1,求证:∠FCG=45°,
(2)如图2,过点D作DH//EF交AB于点H,连接HE,求证:
;(3)如图3,连接AF、DF,若AF交CD于点M,DM=2,BH=3,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2. 
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k<0)与反比例函数y=
的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1) 
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=
(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3, 
(1)求反比例函数y=
的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系之中,点O为坐标原点,直线
分别交x、y轴于点B、A,直线
与直线
交于点C.(1)如图1,求点C的坐标.
(2)如图2,点P(t,0)为C点的右侧x轴上一点,过点P作x轴垂线分别交AB、OC于点N、M,若MN=5NP,求t的值.
(3)如图3,点F为平面内任意一点,是否存在y轴正半轴上一点E,使点E、F、M、N围成的四边形为菱形,若存在求出点E坐标;若不存在,请说明理由.


-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=
(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=
,点B的坐标为(m,﹣2). 
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
相关试题