【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2. ![]()
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.
参考答案:
【答案】
(1)解:过点A作AD⊥x轴,垂足为D
![]()
由A(n,6),C(﹣2,0)可得,
OD=n,AD=6,CO=2
∵tan∠ACO=2
∴
=2,即
=2
∴n=1
∴A(1,6)
将A(1,6)代入反比例函数,得m=1×6=6
∴反比例函数的解析式为 ![]()
将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得
![]()
解得 ![]()
∴一次函数的解析式为y=2x+4
(2)解:由
可得
解得x1=1,x2=﹣3
∵当x=﹣3时,y=﹣2
∴点B坐标为(﹣3,﹣2)
【解析】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.(1)先过点A作AD⊥x轴,根据tan∠ACO=2,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(2)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(题文)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=x+1与y轴交于A点,与反比例函数y=
(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=
.
(1)求k的值;
(2)设点N(1,a)是反比例函数y=
(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点E为正方形ABCD边BC上的一点,点G为BC延长线一点,连接AE,过点E作AE⊥EF,且AE=EF,连接CF.
(1)如图1,求证:∠FCG=45°,
(2)如图2,过点D作DH//EF交AB于点H,连接HE,求证:
;(3)如图3,连接AF、DF,若AF交CD于点M,DM=2,BH=3,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k<0)与反比例函数y=
的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1) 
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+2与双曲线相交于点A(m,3),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=
(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3, 
(1)求反比例函数y=
的解析式;
(2)求cos∠OAB的值;
(3)求经过C、D两点的一次函数解析式.
相关试题