【题目】如图,矩形ABCD 中,对角线AC,BD交于点O,以 AD,OD为邻边作平行四边形ADOE,连接BE.
(1) 求证:四边形AOBE是菱形;
(2) 若∠EAO+∠DCO=180°,DC=2,求四边形ADOE的面积.
![]()
参考答案:
【答案】(1)见解析;(2)S四边形ADOE =
.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=
.根据面积公式SΔADC,即可求解.
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=
.
∴SΔADC=
.
∴S四边形ADOE =
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:
方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;
方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%
(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?
(注:投资收益率=
×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME = α,∠ABE = β,则 α 与 β 之间的数量关系为( )

A. α+3β=180° B. β-α=20° C. α+β=80° D. 3β-2α=90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
在 数轴上对应的数分别用
表示,且
.
是数轴的一动点. ⑴在数轴上标出
的位置,并求出
之间的距离;⑵数轴上一点
距
点24个单位的长度,其对应的数
满足
,当
点满足
时,求
点对应的数.⑶动点
从原点开始第一次向左移动1个单位,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,……点
能移动到与
或
重合的位置吗?若能,请探究第几次移动时重合;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,平行四边形
的顶点
,边
落在
正半轴上,
为线段
上一点,过点
分别作
,
交平行四边形各边如图.若反比例函数
的图象经过点
,四边形
的面积为
,则
的值为__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:

(1)扇形统计图中“优秀”所对应的扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
相关试题