【题目】学习相似三角形和解直角三角形的相关内容后,张老师请同学们交流这样的一个问题:“如上图,在正方形网格上有△A1B1C1和△A2B2C2 , 这两个三角形是否相似?”,那么你认为△A1B1C1和△A2B2C2 , (相似或不相似);理由是 . ![]()
参考答案:
【答案】相似;![]()
【解析】由题意得:A1C1=4,A2C2=2,
由勾股定理得:A1B1=
,B1C1=
,
A2B2=
,B2C2=
,
∴
,
,
,
∴
=2,
∴△A1B1C1∽△A2B2C2.
【考点精析】通过灵活运用相似三角形的判定,掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O -
科目: 来源: 题型:
查看答案和解析>>【题目】数学课上,王老师布置如下任务:如图,△ABC中,BC>AB>AC,在BC边上取一点P,使∠APC=2∠ABC.
小路的作法如下:
① 作AB边的垂直平分线,交BC于点P,交AB于点Q;
② 连结AP.
请你根据小路同学的作图方法,利用直尺和圆规完成作图(保留作图痕迹);并完成以下推理,注明其中蕴含的数学依据:
∵ PQ是AB的垂直平分线
∴ AP= , (依据: );
∴ ∠ABC= , (依据: ).
∴ ∠APC=2∠ABC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】本学期学习了分式方程的解法,下面是晶晶同学的解题过程:
解方程

解:整理,得:
…………………………第①步去分母,得:
…………………………第②步移项,得:
……………………… 第③步合并同类项,得:
……………………… 第④步系数化1,得:
…………………………第⑤步检验:当
时,
所以原方程的解是
. ………………………第⑥步上述晶晶的解题过程从第_____步开始出现错误,错误的原因是_________________.请你帮晶晶改正错误,写出完整的解题过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明四等分弧AB,他的作法如下:
①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;
②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。你认为小明的作法是否正确: , 理由是。 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知平面内一点P,若点P到两条相交直线l1和l2的距离都相等,且距离均为h(h>0),则称点P叫做直线l1和l2的“h距离点”. 例如图1所示,直线l1和l2互相垂直,交于O点,平面内一点P到两直线的距离都是2,则称点P叫做直线l1和l2的“2距离点”.
(1)若直线l1和l2互相垂直,且交于O点,平面内一点P是直线l1和l2的“7距离点”,直接写出OP的长度为 ;
(2)如图2所示,直线l1和l2相交于点O,夹角为60°,已知平面内一点P是直线l1和l2的“3距离点”,求出OP的长度;
(3)已知三条直线两两相交后形成一个等边三角形,如图3所示,在等边△ABC中,点P是三角形内部一点,且点P分别是等边△ABC三边所在直线的“
距离点”,请你直接写出△ABC的面积是 . 


-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读与思考:
整式乘法与因式分解是方向相反的变形,由
,可得
.利用这个式子可以将某些二次项系数是1的二次三项式分解因式.
例如:将式子
分解因式.这个式子的常数项
,一次项系
,所以
.
解:
.上述分解因式
的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图). 请仿照上面的方法,解答下列问题:
(1)分解因式:
=___________________;(2)若
可分解为两个一次因式的积,则整数P的所有可能值是________.
相关试题