【题目】点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC= ;
(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=
∠AOM,求∠NOB的度数.
![]()
参考答案:
【答案】(1)25°;(2)25°;(3)70°.
【解析】
试题分析:(1)根据∠MON和∠BOC的度数可以得到∠MON的度数.
(2)根据OC是∠MOB的角平分线,∠BOC=65°可以求得∠BOM的度数,由∠NOM=90°,可得∠BON的度数,从而可得∠CON的度数.
(3)由∠BOC=65°,∠NOM=90°,∠NOC=
∠AOM,从而可得∠NOC的度数,由∠BOC=65°,从而得到∠NOB的度数.
解:(1)∵∠MON=90°,∠BOC=65°,
∴∠MOC=∠MON﹣∠BOC=90°﹣65°=25°.
故答案为:25°.
(2)∵∠BOC=65°,OC是∠MOB的角平分线,
∴∠MOB=2∠BOC=130°.
∴∠BON=∠MOB﹣∠MON
=130°﹣90°
=40°.
∠CON=∠COB﹣∠BON
=65°﹣40°
=25°.
(3)∵∠NOC
∠AOM,
∴∠AOM=4∠NOC.
∵∠BOC=65°,
∴∠AOC=∠AOB﹣∠BOC
=180°﹣65°
=115°.
∵∠MON=90°,
∴∠AOM+∠NOC=∠AOC﹣∠MON
=115°﹣90°
=25°.
∴4∠NOC+∠NOC=25°.
∴∠NOC=5°.
∴∠NOB=∠NOC+∠BOC=70°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,长方形
的顶点
在坐标原点,顶点
分别在
轴,
轴的正半轴上,
,
为边
的中点,
是边
上的一个动点,当
的周长最小时,点
的坐标为_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则
的值是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,下列说法中不正确的是( )

A. ∠1与∠AOB是同一个角B. ∠AOC也可以用∠O表示
C. ∠β=∠BOCD. 图中有三个角
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b、c的值;
(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE上,求点F的坐标;
(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了打通抚松到万良的最近公路,在一座小山的底部打通隧道.甲、乙两施工队按如图所示进行施工,甲施工队沿AC方向开山修路,乙施工队在这座小山的另一边E处沿射线CA方向同时施工.从AC上的一点B,取∠ABD=155°,经测得BD=1200m,∠D=65°,求开挖点E与点B之间的距离(结果精确到1m).
【参考数据:
,
,
.】
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形
内一点
到顶点
,
,
的长分别是
,
,
,则
________________.
相关试题