【题目】有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.
(1)在如图所示的直角坐标系中,求出该抛物线的解析式.
(2)在正常水位的基础上,当水位上升h(m)时,桥 下水面的宽度为d(m),试求出用d表示h的函数关系式;
(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求
水深超过多少米时就会影响过往船只在桥下顺利航行?
![]()
参考答案:
【答案】(1)
,(2)
,(3)当水深超过2.76m时;
【解析】试题分析:设
出二次函数顶点式解析式,代入一个点的坐标即可解答;
把点
代入
中的函数解析式就可以解决;
把点
代入
中的函数解析式就可以解决.
试题解析:
设二次函数解析式为![]()
代入点
得,
![]()
解得
因此二次函数解析式为
把点
代入函数解析式![]()
得![]()
当桥下水面的宽度等于
时,抛物线上第四象限点的横坐标为![]()
把
代入函数解析式
中,
(米),
![]()
答:当水深超过
米时,超过了正常水位
,就会影响过往船只在桥下顺利航行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果水位升高0.5米记为+0.5米,那么水位下降1米应记为( )
A.﹣1米
B.+1米
C.﹣1.5米
D.+1.5米 -
科目: 来源: 题型:
查看答案和解析>>【题目】一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是( )
A. 中位数是91 B. 平均数是91 C. 众数是91 D. 极差是78
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆O的直径,D是弧AB上一点,C是弧AD的中点,过点C作AB的垂线,交AB
于E,与过点D的切线交于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①
∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是_______(填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.
(1)设商场每件商品降价x元,利润为y元,写出y与x的函数关系式。
(2)当该商品的销售价为多少元时,所获利润最大?最大利润是多少?
(3)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
相关试题