【题目】在直线AB上任取一点O,过点O作射线OC,OD,使
当
时,
的度数是( )
A.
B.
C.
或
D.
或![]()
参考答案:
【答案】D
【解析】
分射线OC、OD在直线AB的两侧两种情况作出图形,在同一侧时,根据平角等于180°列式计算即可得解,在两侧时,先求出∠AOD,再根据邻补角的定义列式计算即可得解.
如图,
![]()
射线OC、OD在直线AB的同一侧时,
∵∠COD=90°,
∴∠BOD=180°-90°-∠AOC=180°-90°-40°=50°,
射线OC、OD在直线AB的两侧时,
∵∠COD=90°,
∴∠AOD=90°-∠AOC=90°-40°=50°,
∴∠BOD=180°-∠AOD=180°-50°=130°,
综上所述,∠BOD的度数50°或130°.
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.

(1)求证:△BDE∽△CFD;
(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;
(3)当△AOF是等腰三角形时,求BE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.

(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“五一”小长假,小颖和小梅两家计划从“北京天安门”“三亚南山”“内蒙古大草原”三个景区中任意选择一景区游玩,小颖和小梅制作了如下三张质地大小完全相同的卡片,背面朝上洗匀后各自从中抽去一张来确定游玩景区(第一人抽完放回洗匀后另一人再抽去),则两人抽到同一景区的概率是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数
的图象与正比例函数
的图象交于点A(m,4).(1)求m、n的值;
(2)设一次函数
的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数
的值小于函数
的值的自变量x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了倡导“节约用水,从我做起”,鼓楼区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中某些家庭一年的月平均用水量(单位:吨),调查中发现,每户用水量每月均在10﹣14吨范围,并将调查结果制成了如图所示的条形统计图(不完整)和扇形统计图.

(1)请将条形统计图补充完整;
(2)这些家庭月用水量数据的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计鼓楼区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1). 
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
相关试题