【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数
的图象上.
![]()
(1)求反比例函数
的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=
S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
参考答案:
【答案】(1)
;(2)P(
,0);(3)E(
,﹣1),在.
【解析】试题分析:(1)将点A(
,1)代入
,利用待定系数法即可求出反比例函数的表达式;
(2)先由射影定理求出BC=3,那么B(
,﹣3),计算求出S△AOB=
×
×4=
.则S△AOP=
S△AOB=
.设点P的坐标为(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣
,﹣1),即可求解.
试题解析:(1)∵点A(
,1)在反比例函数
的图象上,∴k=
×1=
,∴反比例函数的表达式为
;
(2)∵A(
,1),AB⊥x轴于点C,∴OC=
,AC=1,由射影定理得
=ACBC,可得BC=3,B(
,﹣3),S△AOB=
×
×4=
,∴S△AOP=
S△AOB=
.
设点P的坐标为(m,0),∴
×|m|×1=
,∴|m|=
,∵P是x轴的负半轴上的点,∴m=﹣
,∴点P的坐标为(
,0);
(3)点E在该反比例函数的图象上,理由如下:
∵OA⊥OB,OA=2,OB=
,AB=4,∴sin∠ABO=
=
=
,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=
,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=
,BC﹣DE=1,∴E(
,﹣1),∵
×(﹣1)=
,∴点E在该反比例函数的图象上.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 若a2>b2,则a>bB. 若a>b,则c-a>c-b
C. 若ab<0,a<0,则b<0D. 若a<0,b>a,则ab<a2
-
科目: 来源: 题型:
查看答案和解析>>【题目】当m=______时,代数式3m-1与2(1-m)的值互为相反数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:
(1)(1+a)(1-a)+(a-2)2,其中a=
;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=-3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.
(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;
(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)
(1)这是一个棱锥 .
(2)这个几何体有4个面 .
(3)这个几何体有5个顶点 .
(4)这个几何体有8条棱 .
(5)请你再说出一个正确的结论 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 .
相关试题