【题目】如图,已知抛物线
(
)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
![]()
参考答案:
【答案】(1)
;(2)当a=
时,S四边形BOCE最大,且最大值为
,此时,点E坐标为(
,
);(3)P(﹣1,1)或(﹣1,﹣2).
【解析】
试题分析:(1)将A、B两点的坐标代入抛物线的解析式中,即可求出二次函数的解析式;
(2)过E作EF⊥x轴于F.设E(a,
)(﹣3<a<0),则EF=
,BF=a+3,OF=﹣a,∴S四边形BOCE=
=
BFEF+
(OC+EF)OF =
,配方即可得出结论,当a=
时,
=
大,即可得到点E的坐标;
(3)由P在抛物线的对称轴上,设出P坐标为(﹣2,m),如图所示,过A′作A′N⊥对称轴于N,由旋转的性质可证明△A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标.
试题解析:(1)∵抛物线
(
)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴
,解得:
,∴所求抛物线解析式为:
;
(2)如图2,过点E作EF⊥x轴于点F,设E(a,
)(﹣3<a<0),∴EF=
,BF=a+3,OF=﹣a,∴S四边形BOCE=
=
BFEF+
(OC+EF)OF=
=
=
,∴当a=
时,S四边形BOCE最大,且最大值为
.此时,点E坐标为(
,
);
(3)∵抛物线
的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,如图,∴PA=PA′,∠APA′=90°,如图3,过A′作A′N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA′+∠MPA=∠NA′P+∠NPA′=90°,∴∠NA′P=∠NPA,在△A′NP与△APM中,∵∠A′NP=∠AMP=90°,∠NA′P=∠MPA,PA′=AP,∴△A′NP≌△PMA,∴A′N=PM=|m|,PN=AM=2,∴A′(m﹣1,m+2),代入
得:
,解得:m=1,m=﹣2,∴P(﹣1,1),(﹣1,﹣2).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )

A.3
B.4
C.5
D.6 -
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)
(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为 ;
(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为 ;
(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为 ;
(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.

(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的角平分线,∠B=45°,∠ADC=75°,求∠BAC、∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形的三边分别为a、b、c,且(a-b)2+(a2+b2-c2)2=0,则三角形的形状为————————————————。
相关试题