【题目】某地区为绿化环境,计划购买甲、乙两种树苗共计n棵.有关甲、乙两种树苗的信息如图所示:
![]()
(1)当n=400时,如果购买甲、乙两种树苗共用27000元,那么甲、乙两种树苗各买了多少棵?
(2)实际购买这两种树苗的总费用恰好为27000元,其中甲种树苗买了m棵.
①写出m与n满足的关系式;
②要使这批树苗的成活率不低于92%,求n的最大值.
参考答案:
【答案】(1)甲种树苗300棵,乙种树苗100棵;(2)①m=3n-900;②n的最大值为375
【解析】分析:(1)、设甲种树苗的数量为x棵,则乙种树苗的数量为400-x棵,根据购买甲、乙两种树苗共用27000元可列方程求解即可;(2)、①根据总费用为27000元可列方程,得出m和n的函数关系式;②根据这批树苗的成活率不低于92%可列出不等式求解.
详解:(1)设甲种树苗的数量为x棵,则乙种树苗的数量为400-x棵,
60x+90(400-x)=27000, 解得x=300, 400-x=100.
答:甲种树苗买了300棵,乙种树苗买了100棵.
(2)①60m+90(n-m)=27000,即m=3n-900;
②90%m+95%(n-m)≥92%n, ∴3n-5m≥0, ∴3n-5(3n-900)≥0
∴n≤375, ∴n的最大值为375.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:
(1)矩形__________“奇妙四边形”(填“是”或“不是”);
(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;
(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”,作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=12厘米,(即∠B=∠C),BC=9厘米,点M为AB的中点,
(1)如果点P在线段BC上以2厘米/秒的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1.5秒后,△BPM与△CQP是否全等?请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPM与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,如果与∠B相邻的外角等于140°,那么∠A+∠C=_______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x,y的方程组
的解满足x<0,y>0.(1)x=________, y=________(用含a的代数式表示);
(2)求a的取值范围;
(3)若2x8y=2m,用含有a的代数式表示m,并求m的取值范围.
相关试题