【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
![]()
参考答案:
【答案】(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;
(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出SEGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.
试题解析:(1)证明:∵EP⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,∵∠ABE=∠EGF,∠BAE=∠GEF,AE=EF,∴△ABE≌△EGF(AAS);
(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴SEGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是( )

A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.

(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;
(2)表中a= , b= , 并请补全频数分布直方图;
(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )

A.①②
B.②③
C.①③
D.①②③ -
科目: 来源: 题型:
查看答案和解析>>【题目】根据下面给出的数轴,解答下面的问题:

(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.
(2)请问A,B两点之间的距离是多少?
(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数. -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的证明. 已知:如图,BE∥CD,∠A=∠1,

求证:∠C=∠E.
证明:∵BE∥CD (已知 )
∴∠2=∠C ()
又∵∠A=∠1 (已知 )
∴AC∥DE ()
∴∠2=∠E ()
∴∠C=∠E (等量代换 )
相关试题