【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与x轴的交点坐标是;顶点坐标是;
(2)在坐标系中利用描点法画出此抛物线.
x | … | … | |||||
y | … | … |
![]()
参考答案:
【答案】
(1)(3,0)、(﹣1,0);(1,﹣4)
(2)-1;0;1;2;3;0;-3;4;-3;0
【解析】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,
则顶点为(1,﹣4),
当y=0时,x2﹣2x﹣3=0,
(x﹣3)(x+1)=0,
x1=3,x2=﹣1,
则与x轴的交点坐标是(3,0)、(﹣1,0);
所以答案是:(3,0)、(﹣1,0);(1,﹣4);(2)列表如下:![]()
![]()
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果为4a2b﹣3ab2+4abc.
(1)计算B的表达式;
(2)求出2A﹣B的结果;
(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=
,b=
,求(2)中式子的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分)
中位数(分)
众数(分)
方差(分2)
初中部
a
85
b
s初中2
高中部
85
c
100
160
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线。
已知:P为⊙O外一点。
求作:经过点P的⊙O的切线
小敏的作法如下:
如图:
①连接OP,作线段OP的垂直平分线MN交OP于C
②以点C为圆心,CO的长为半径作圆,交⊙O 于A,B两点
③作直线PA,PB所以直线PA,PB就是所求的切线
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的是一个长
,宽
,高
的长方体,现在把它等分为
个棱长为
的小正方体
说明你的分法;
把这
个小正方体排成一排组成一个新长方体,这个新长方体与原长方体相比.表面积怎样变化? -
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂车间共有10名工人,调查每个工人的日均生产能力,获得数据制成如下统计图.
(1)求这10名工人的日均生产件数的平均数、众数、中位数;
(2)若要使占60%的工人都能完成任务,应选什么统计量(平均数、中位数、众数)做日生产件数的定额?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),求该光盘的直径是多少?

相关试题