【题目】如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:
≈1.41,
≈1.73,
≈2.45)![]()
参考答案:
【答案】解:由题意可知:作OC⊥AB于C,![]()
∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.
在Rt△ACO中,
∵∠ACO=90°,∠AOC=30°,
∴AC=
AO=40m,OC=
AC=40
m.
在Rt△BOC中,
∵∠BCO=90°,∠BOC=45°,
∴BC=OC=40
m.
∴OB=
=40
≈40×2.45≈82(米).
答:小华家到学校的距离大约为82米.
【解析】作OC⊥AB于C,由已知可得△ABO中∠A=60°,∠B=45°且OA=80m,要求OB的长,可以先求出OC和BC的长.
【考点精析】根据题目的已知条件,利用关于方向角问题的相关知识可以得到问题的答案,需要掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P.求证:∠AOB=60°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=
,其中
为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目
频数(人数)
羽毛球
30
篮球
a
乒乓球
36
排球
b
足球
12

请根据以上图表信息解答下列问题:
(1)频数分布表中的a= , b=;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;
(3)全校有多少名学生选择参加乒乓球运动? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=90°,反比例函数y=﹣
(x<0)的图象过点A(﹣1,a),反比例函数y=
(k>0,x>0)的图象过点B,且AB∥x轴. 
(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=
于另一点,求△OBC的面积. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.

(1)求证:BC平分∠ABP;
(2)求证:PC2=PBPE;
(3)若BE﹣BP=PC=4,求⊙O的半径.
相关试题