【题目】(1)计算:[(x+y)2﹣(x﹣y)2]÷(2xy).
(2)解方程:![]()
(3)因式分解:xy2﹣4x
参考答案:
【答案】(1)2;(2)﹣28;(3)x(y+2)(y﹣2).
【解析】
(1)根据整式的混合运算顺序和运算法则计算可得;
(2)先去分母化分式方程为整式方程,解之求得x的值,再检验即可得;
(3)先提取公因式x,再利用平方差公式分解可得.
解:(1)原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)
=4xy÷2xy
=2;
(2)两边都乘以(x+4)(x﹣4),得:(x+4)2﹣6(x﹣4)=(x+4)(x﹣4),
解得:x=﹣28,
经检验:x=﹣28是原分式方程的解;
(3)原式=x(y2﹣4)=x(y+2)(y﹣2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”
译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”
设井深为x尺,根据题意列方程,正确的是( )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,AC=BC=4,点D为AB的中点,M,N分别在BC,AC上,且BM=CN现有以下四个结论:
①DN=DM; ② ∠NDM=90°; ③ 四边形CMDN的面积为4; ④△CMN的面积最大为2.
其中正确的结论有( )

A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.
(1)填空:a=______,b=______,c=______.
(2)先化简,再求值:-a2b+2(3ab2-a2b)-3(2ab2-a2b)+abc

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点O是正方形ABCD对角线BD的中点.
(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
①∠AEM=∠FEM; ②点F是AB的中点;
(2)如图2,若点E是OD上一点,点F是AB上一点,且使
=
=
,请判断△EFC的形状,并说明理由;
(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当
=
时,请猜想
的值(请直接写出结论).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OE平分
,OF平分
若
是直角,
,求
的度数.
若
,
,
,请用x的代数式来表示
直接写出结果就行
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.

(1)作出△ABC关于y轴对称的△A1B1C1;
(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;
(3)求出△ABC的面积.
相关试题