【题目】圆柱形纸筒沿母线AB剪开铺平,得到一个矩形(如图).如果将这个纸筒沿线路BMA剪开铺平,得到的图形是( )![]()
A.矩形
B.半圆
C.三角形
D.平行四边形
参考答案:
【答案】D
【解析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
M是所在母线的中点,如果将这个纸筒沿线路BMA剪开,即把圆柱延AB与M所在母线平方在一个平面内,再剪开AM,BM.则得到两个重合的△ABM,△ABM是等腰三角形,且AB是底边,展开后得到的图形是一个以△ABM的腰AM、BM为边的四边形,相对的边对应相等,所以是平行四边形.
故选D.
【考点精析】通过灵活运用平行四边形的判定,掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线

(1)写出该抛物线的顶点D坐标和对称轴.
(2)抛物线与
轴交于A,B两点,求△ABD的面积
-
科目: 来源: 题型:
查看答案和解析>>【题目】长度为1㎝、2㎝、3㎝、4㎝、5㎝的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )
A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:
(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;
③当点P在AB上时,BP= ;④当点P在BC上时,BP= .
(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.
(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与
轴、
轴分别相交于点A,B,四边形ABCD是正方形,抛物线
在经过A,D两点.
(1)求该抛物线表达式;
(2)连接BD,将线段BD绕着D点顺时针旋转90度,得到DB’.直接写出点B’的坐标,并判断点B’是否落在抛物线上,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是( )

①∠AOB=∠COD;
②∠AOB+∠COD=90°;
③∠BOC+∠AOD=180°;
④∠AOC-∠COD=∠BOC.A.①②③
B.①②④
C.①③④
D.②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知,l1∥l2 , C1在l1上,并且C1A⊥l2 , A为垂足,C2 , C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1 , △ABC2的面积为S2 , △ABC3的面积为S3 , 小颖认为S1=S2=S3 , 请帮小颖说明理由

相关试题